| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clines |
⊢ Lines |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
vq |
⊢ 𝑞 |
| 5 |
|
catm |
⊢ Atoms |
| 6 |
1
|
cv |
⊢ 𝑘 |
| 7 |
6 5
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
| 8 |
|
vr |
⊢ 𝑟 |
| 9 |
4
|
cv |
⊢ 𝑞 |
| 10 |
8
|
cv |
⊢ 𝑟 |
| 11 |
9 10
|
wne |
⊢ 𝑞 ≠ 𝑟 |
| 12 |
3
|
cv |
⊢ 𝑠 |
| 13 |
|
vp |
⊢ 𝑝 |
| 14 |
13
|
cv |
⊢ 𝑝 |
| 15 |
|
cple |
⊢ le |
| 16 |
6 15
|
cfv |
⊢ ( le ‘ 𝑘 ) |
| 17 |
|
cjn |
⊢ join |
| 18 |
6 17
|
cfv |
⊢ ( join ‘ 𝑘 ) |
| 19 |
9 10 18
|
co |
⊢ ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) |
| 20 |
14 19 16
|
wbr |
⊢ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) |
| 21 |
20 13 7
|
crab |
⊢ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } |
| 22 |
12 21
|
wceq |
⊢ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } |
| 23 |
11 22
|
wa |
⊢ ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) |
| 24 |
23 8 7
|
wrex |
⊢ ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) |
| 25 |
24 4 7
|
wrex |
⊢ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) |
| 26 |
25 3
|
cab |
⊢ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } |
| 27 |
1 2 26
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) |
| 28 |
0 27
|
wceq |
⊢ Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) |