Metamath Proof Explorer


Definition df-lines

Description: Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of Holland95 p. 222. (Contributed by NM, 19-Sep-2011)

Ref Expression
Assertion df-lines Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clines Lines
1 vk 𝑘
2 cvv V
3 vs 𝑠
4 vq 𝑞
5 catm Atoms
6 1 cv 𝑘
7 6 5 cfv ( Atoms ‘ 𝑘 )
8 vr 𝑟
9 4 cv 𝑞
10 8 cv 𝑟
11 9 10 wne 𝑞𝑟
12 3 cv 𝑠
13 vp 𝑝
14 13 cv 𝑝
15 cple le
16 6 15 cfv ( le ‘ 𝑘 )
17 cjn join
18 6 17 cfv ( join ‘ 𝑘 )
19 9 10 18 co ( 𝑞 ( join ‘ 𝑘 ) 𝑟 )
20 14 19 16 wbr 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 )
21 20 13 7 crab { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) }
22 12 21 wceq 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) }
23 11 22 wa ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } )
24 23 8 7 wrex 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } )
25 24 4 7 wrex 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } )
26 25 3 cab { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) }
27 1 2 26 cmpt ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } )
28 0 27 wceq Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } )