Metamath Proof Explorer


Definition df-lmod

Description: Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013)

Ref Expression
Assertion df-lmod LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmod LMod
1 vg 𝑔
2 cgrp Grp
3 cbs Base
4 1 cv 𝑔
5 4 3 cfv ( Base ‘ 𝑔 )
6 vv 𝑣
7 cplusg +g
8 4 7 cfv ( +g𝑔 )
9 va 𝑎
10 csca Scalar
11 4 10 cfv ( Scalar ‘ 𝑔 )
12 vf 𝑓
13 cvsca ·𝑠
14 4 13 cfv ( ·𝑠𝑔 )
15 vs 𝑠
16 12 cv 𝑓
17 16 3 cfv ( Base ‘ 𝑓 )
18 vk 𝑘
19 16 7 cfv ( +g𝑓 )
20 vp 𝑝
21 cmulr .r
22 16 21 cfv ( .r𝑓 )
23 vt 𝑡
24 crg Ring
25 16 24 wcel 𝑓 ∈ Ring
26 vq 𝑞
27 18 cv 𝑘
28 vr 𝑟
29 vx 𝑥
30 6 cv 𝑣
31 vw 𝑤
32 28 cv 𝑟
33 15 cv 𝑠
34 31 cv 𝑤
35 32 34 33 co ( 𝑟 𝑠 𝑤 )
36 35 30 wcel ( 𝑟 𝑠 𝑤 ) ∈ 𝑣
37 9 cv 𝑎
38 29 cv 𝑥
39 34 38 37 co ( 𝑤 𝑎 𝑥 )
40 32 39 33 co ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )
41 32 38 33 co ( 𝑟 𝑠 𝑥 )
42 35 41 37 co ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )
43 40 42 wceq ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )
44 26 cv 𝑞
45 20 cv 𝑝
46 44 32 45 co ( 𝑞 𝑝 𝑟 )
47 46 34 33 co ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )
48 44 34 33 co ( 𝑞 𝑠 𝑤 )
49 48 35 37 co ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) )
50 47 49 wceq ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) )
51 36 43 50 w3a ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )
52 23 cv 𝑡
53 44 32 52 co ( 𝑞 𝑡 𝑟 )
54 53 34 33 co ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )
55 44 35 33 co ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )
56 54 55 wceq ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )
57 cur 1r
58 16 57 cfv ( 1r𝑓 )
59 58 34 33 co ( ( 1r𝑓 ) 𝑠 𝑤 )
60 59 34 wceq ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤
61 56 60 wa ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 )
62 51 61 wa ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) )
63 62 31 30 wral 𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) )
64 63 29 30 wral 𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) )
65 64 28 27 wral 𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) )
66 65 26 27 wral 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) )
67 25 66 wa ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
68 67 23 22 wsbc [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
69 68 20 19 wsbc [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
70 69 18 17 wsbc [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
71 70 15 14 wsbc [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
72 71 12 11 wsbc [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
73 72 9 8 wsbc [ ( +g𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
74 73 6 5 wsbc [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) )
75 74 1 2 crab { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) }
76 0 75 wceq LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) }