Description: A left-module isNoetherian iff it is hereditarily finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lnm | ⊢ LNoeM = { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤 ↾s 𝑖 ) ∈ LFinGen } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clnm | ⊢ LNoeM | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | clmod | ⊢ LMod | |
| 3 | vi | ⊢ 𝑖 | |
| 4 | clss | ⊢ LSubSp | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( LSubSp ‘ 𝑤 ) |
| 7 | cress | ⊢ ↾s | |
| 8 | 3 | cv | ⊢ 𝑖 |
| 9 | 5 8 7 | co | ⊢ ( 𝑤 ↾s 𝑖 ) |
| 10 | clfig | ⊢ LFinGen | |
| 11 | 9 10 | wcel | ⊢ ( 𝑤 ↾s 𝑖 ) ∈ LFinGen |
| 12 | 11 3 6 | wral | ⊢ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤 ↾s 𝑖 ) ∈ LFinGen |
| 13 | 12 1 2 | crab | ⊢ { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤 ↾s 𝑖 ) ∈ LFinGen } |
| 14 | 0 13 | wceq | ⊢ LNoeM = { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤 ↾s 𝑖 ) ∈ LFinGen } |