| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islnm.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑀 ) |
| 2 |
|
fveq2 |
⊢ ( 𝑤 = 𝑀 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑀 ) ) |
| 3 |
2 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑀 → ( LSubSp ‘ 𝑤 ) = 𝑆 ) |
| 4 |
|
oveq1 |
⊢ ( 𝑤 = 𝑀 → ( 𝑤 ↾s 𝑖 ) = ( 𝑀 ↾s 𝑖 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑤 = 𝑀 → ( ( 𝑤 ↾s 𝑖 ) ∈ LFinGen ↔ ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ) ) |
| 6 |
3 5
|
raleqbidv |
⊢ ( 𝑤 = 𝑀 → ( ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤 ↾s 𝑖 ) ∈ LFinGen ↔ ∀ 𝑖 ∈ 𝑆 ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ) ) |
| 7 |
|
df-lnm |
⊢ LNoeM = { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤 ↾s 𝑖 ) ∈ LFinGen } |
| 8 |
6 7
|
elrab2 |
⊢ ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖 ∈ 𝑆 ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ) ) |