| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islnm2.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
islnm2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑀 ) |
| 3 |
|
islnm2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑀 ) |
| 4 |
2
|
islnm |
⊢ ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖 ∈ 𝑆 ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ) ) |
| 5 |
|
eqid |
⊢ ( 𝑀 ↾s 𝑖 ) = ( 𝑀 ↾s 𝑖 ) |
| 6 |
5 2 3 1
|
islssfg2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑖 ∈ 𝑆 ) → ( ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ↔ ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) ( 𝑁 ‘ 𝑔 ) = 𝑖 ) ) |
| 7 |
|
eqcom |
⊢ ( ( 𝑁 ‘ 𝑔 ) = 𝑖 ↔ 𝑖 = ( 𝑁 ‘ 𝑔 ) ) |
| 8 |
7
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) ( 𝑁 ‘ 𝑔 ) = 𝑖 ↔ ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) |
| 9 |
6 8
|
bitrdi |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑖 ∈ 𝑆 ) → ( ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ↔ ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 10 |
9
|
ralbidva |
⊢ ( 𝑀 ∈ LMod → ( ∀ 𝑖 ∈ 𝑆 ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ↔ ∀ 𝑖 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 11 |
10
|
pm5.32i |
⊢ ( ( 𝑀 ∈ LMod ∧ ∀ 𝑖 ∈ 𝑆 ( 𝑀 ↾s 𝑖 ) ∈ LFinGen ) ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 12 |
4 11
|
bitri |
⊢ ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |