Metamath Proof Explorer


Theorem lnmlmod

Description: A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Assertion lnmlmod ( 𝑀 ∈ LNoeM → 𝑀 ∈ LMod )

Proof

Step Hyp Ref Expression
1 eqid ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 )
2 1 islnm ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑎 ∈ ( LSubSp ‘ 𝑀 ) ( 𝑀s 𝑎 ) ∈ LFinGen ) )
3 2 simplbi ( 𝑀 ∈ LNoeM → 𝑀 ∈ LMod )