Metamath Proof Explorer


Theorem islnm

Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypothesis islnm.s S=LSubSpM
Assertion islnm MLNoeMMLModiSM𝑠iLFinGen

Proof

Step Hyp Ref Expression
1 islnm.s S=LSubSpM
2 fveq2 w=MLSubSpw=LSubSpM
3 2 1 eqtr4di w=MLSubSpw=S
4 oveq1 w=Mw𝑠i=M𝑠i
5 4 eleq1d w=Mw𝑠iLFinGenM𝑠iLFinGen
6 3 5 raleqbidv w=MiLSubSpww𝑠iLFinGeniSM𝑠iLFinGen
7 df-lnm LNoeM=wLMod|iLSubSpww𝑠iLFinGen
8 6 7 elrab2 MLNoeMMLModiSM𝑠iLFinGen