Metamath Proof Explorer


Definition df-mnc

Description: Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Assertion df-mnc Monic = ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑝 ∈ ( Poly ‘ 𝑠 ) ∣ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnc Monic
1 vs 𝑠
2 cc
3 2 cpw 𝒫 ℂ
4 vp 𝑝
5 cply Poly
6 1 cv 𝑠
7 6 5 cfv ( Poly ‘ 𝑠 )
8 ccoe coeff
9 4 cv 𝑝
10 9 8 cfv ( coeff ‘ 𝑝 )
11 cdgr deg
12 9 11 cfv ( deg ‘ 𝑝 )
13 12 10 cfv ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) )
14 c1 1
15 13 14 wceq ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1
16 15 4 7 crab { 𝑝 ∈ ( Poly ‘ 𝑠 ) ∣ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 }
17 1 3 16 cmpt ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑝 ∈ ( Poly ‘ 𝑠 ) ∣ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 } )
18 0 17 wceq Monic = ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑝 ∈ ( Poly ‘ 𝑠 ) ∣ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 } )