Description: Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mnc | |- Monic = ( s e. ~P CC |-> { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmnc | |- Monic |
|
1 | vs | |- s |
|
2 | cc | |- CC |
|
3 | 2 | cpw | |- ~P CC |
4 | vp | |- p |
|
5 | cply | |- Poly |
|
6 | 1 | cv | |- s |
7 | 6 5 | cfv | |- ( Poly ` s ) |
8 | ccoe | |- coeff |
|
9 | 4 | cv | |- p |
10 | 9 8 | cfv | |- ( coeff ` p ) |
11 | cdgr | |- deg |
|
12 | 9 11 | cfv | |- ( deg ` p ) |
13 | 12 10 | cfv | |- ( ( coeff ` p ) ` ( deg ` p ) ) |
14 | c1 | |- 1 |
|
15 | 13 14 | wceq | |- ( ( coeff ` p ) ` ( deg ` p ) ) = 1 |
16 | 15 4 7 | crab | |- { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } |
17 | 1 3 16 | cmpt | |- ( s e. ~P CC |-> { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } ) |
18 | 0 17 | wceq | |- Monic = ( s e. ~P CC |-> { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } ) |