Metamath Proof Explorer


Definition df-mnc

Description: Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Assertion df-mnc
|- Monic = ( s e. ~P CC |-> { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnc
 |-  Monic
1 vs
 |-  s
2 cc
 |-  CC
3 2 cpw
 |-  ~P CC
4 vp
 |-  p
5 cply
 |-  Poly
6 1 cv
 |-  s
7 6 5 cfv
 |-  ( Poly ` s )
8 ccoe
 |-  coeff
9 4 cv
 |-  p
10 9 8 cfv
 |-  ( coeff ` p )
11 cdgr
 |-  deg
12 9 11 cfv
 |-  ( deg ` p )
13 12 10 cfv
 |-  ( ( coeff ` p ) ` ( deg ` p ) )
14 c1
 |-  1
15 13 14 wceq
 |-  ( ( coeff ` p ) ` ( deg ` p ) ) = 1
16 15 4 7 crab
 |-  { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 }
17 1 3 16 cmpt
 |-  ( s e. ~P CC |-> { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } )
18 0 17 wceq
 |-  Monic = ( s e. ~P CC |-> { p e. ( Poly ` s ) | ( ( coeff ` p ) ` ( deg ` p ) ) = 1 } )