Metamath Proof Explorer


Definition df-plylt

Description: Define the class of limited-degree polynomials. (Contributed by Stefan O'Rear, 8-Dec-2014)

Ref Expression
Assertion df-plylt
|- Poly< = ( s e. ~P CC , x e. NN0 |-> { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplylt
 |-  Poly<
1 vs
 |-  s
2 cc
 |-  CC
3 2 cpw
 |-  ~P CC
4 vx
 |-  x
5 cn0
 |-  NN0
6 vp
 |-  p
7 cply
 |-  Poly
8 1 cv
 |-  s
9 8 7 cfv
 |-  ( Poly ` s )
10 6 cv
 |-  p
11 c0p
 |-  0p
12 10 11 wceq
 |-  p = 0p
13 cdgr
 |-  deg
14 10 13 cfv
 |-  ( deg ` p )
15 clt
 |-  <
16 4 cv
 |-  x
17 14 16 15 wbr
 |-  ( deg ` p ) < x
18 12 17 wo
 |-  ( p = 0p \/ ( deg ` p ) < x )
19 18 6 9 crab
 |-  { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) }
20 1 4 3 5 19 cmpo
 |-  ( s e. ~P CC , x e. NN0 |-> { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } )
21 0 20 wceq
 |-  Poly< = ( s e. ~P CC , x e. NN0 |-> { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } )