Description: Define the class of limited-degree polynomials. (Contributed by Stefan O'Rear, 8-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-plylt | |- Poly< = ( s e. ~P CC , x e. NN0 |-> { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cplylt | |- Poly< |
|
| 1 | vs | |- s |
|
| 2 | cc | |- CC |
|
| 3 | 2 | cpw | |- ~P CC |
| 4 | vx | |- x |
|
| 5 | cn0 | |- NN0 |
|
| 6 | vp | |- p |
|
| 7 | cply | |- Poly |
|
| 8 | 1 | cv | |- s |
| 9 | 8 7 | cfv | |- ( Poly ` s ) |
| 10 | 6 | cv | |- p |
| 11 | c0p | |- 0p |
|
| 12 | 10 11 | wceq | |- p = 0p |
| 13 | cdgr | |- deg |
|
| 14 | 10 13 | cfv | |- ( deg ` p ) |
| 15 | clt | |- < |
|
| 16 | 4 | cv | |- x |
| 17 | 14 16 15 | wbr | |- ( deg ` p ) < x |
| 18 | 12 17 | wo | |- ( p = 0p \/ ( deg ` p ) < x ) |
| 19 | 18 6 9 | crab | |- { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } |
| 20 | 1 4 3 5 19 | cmpo | |- ( s e. ~P CC , x e. NN0 |-> { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } ) |
| 21 | 0 20 | wceq | |- Poly< = ( s e. ~P CC , x e. NN0 |-> { p e. ( Poly ` s ) | ( p = 0p \/ ( deg ` p ) < x ) } ) |