Step |
Hyp |
Ref |
Expression |
1 |
|
dgrsub2.a |
|- N = ( deg ` F ) |
2 |
|
simpr2 |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> N e. NN ) |
3 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
4 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
5 |
3 4
|
eqbrtrid |
|- ( N e. NN -> ( deg ` 0p ) < N ) |
6 |
|
fveq2 |
|- ( ( F oF - G ) = 0p -> ( deg ` ( F oF - G ) ) = ( deg ` 0p ) ) |
7 |
6
|
breq1d |
|- ( ( F oF - G ) = 0p -> ( ( deg ` ( F oF - G ) ) < N <-> ( deg ` 0p ) < N ) ) |
8 |
5 7
|
syl5ibrcom |
|- ( N e. NN -> ( ( F oF - G ) = 0p -> ( deg ` ( F oF - G ) ) < N ) ) |
9 |
2 8
|
syl |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( F oF - G ) = 0p -> ( deg ` ( F oF - G ) ) < N ) ) |
10 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
11 |
10
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
12 |
|
plyssc |
|- ( Poly ` T ) C_ ( Poly ` CC ) |
13 |
12
|
sseli |
|- ( G e. ( Poly ` T ) -> G e. ( Poly ` CC ) ) |
14 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
15 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
16 |
14 15
|
dgrsub |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) ) -> ( deg ` ( F oF - G ) ) <_ if ( ( deg ` F ) <_ ( deg ` G ) , ( deg ` G ) , ( deg ` F ) ) ) |
17 |
11 13 16
|
syl2an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) -> ( deg ` ( F oF - G ) ) <_ if ( ( deg ` F ) <_ ( deg ` G ) , ( deg ` G ) , ( deg ` F ) ) ) |
18 |
17
|
adantr |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( deg ` ( F oF - G ) ) <_ if ( ( deg ` F ) <_ ( deg ` G ) , ( deg ` G ) , ( deg ` F ) ) ) |
19 |
|
simpr1 |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( deg ` G ) = N ) |
20 |
1
|
eqcomi |
|- ( deg ` F ) = N |
21 |
20
|
a1i |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( deg ` F ) = N ) |
22 |
19 21
|
ifeq12d |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> if ( ( deg ` F ) <_ ( deg ` G ) , ( deg ` G ) , ( deg ` F ) ) = if ( ( deg ` F ) <_ ( deg ` G ) , N , N ) ) |
23 |
|
ifid |
|- if ( ( deg ` F ) <_ ( deg ` G ) , N , N ) = N |
24 |
22 23
|
eqtrdi |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> if ( ( deg ` F ) <_ ( deg ` G ) , ( deg ` G ) , ( deg ` F ) ) = N ) |
25 |
18 24
|
breqtrd |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( deg ` ( F oF - G ) ) <_ N ) |
26 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
27 |
|
eqid |
|- ( coeff ` G ) = ( coeff ` G ) |
28 |
26 27
|
coesub |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) ) -> ( coeff ` ( F oF - G ) ) = ( ( coeff ` F ) oF - ( coeff ` G ) ) ) |
29 |
11 13 28
|
syl2an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) -> ( coeff ` ( F oF - G ) ) = ( ( coeff ` F ) oF - ( coeff ` G ) ) ) |
30 |
29
|
adantr |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( coeff ` ( F oF - G ) ) = ( ( coeff ` F ) oF - ( coeff ` G ) ) ) |
31 |
30
|
fveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( coeff ` ( F oF - G ) ) ` N ) = ( ( ( coeff ` F ) oF - ( coeff ` G ) ) ` N ) ) |
32 |
2
|
nnnn0d |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> N e. NN0 ) |
33 |
26
|
coef3 |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) |
34 |
33
|
ad2antrr |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( coeff ` F ) : NN0 --> CC ) |
35 |
34
|
ffnd |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( coeff ` F ) Fn NN0 ) |
36 |
27
|
coef3 |
|- ( G e. ( Poly ` T ) -> ( coeff ` G ) : NN0 --> CC ) |
37 |
36
|
ad2antlr |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( coeff ` G ) : NN0 --> CC ) |
38 |
37
|
ffnd |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( coeff ` G ) Fn NN0 ) |
39 |
|
nn0ex |
|- NN0 e. _V |
40 |
39
|
a1i |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> NN0 e. _V ) |
41 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
42 |
|
simplr3 |
|- ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) /\ N e. NN0 ) -> ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) |
43 |
|
eqidd |
|- ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) /\ N e. NN0 ) -> ( ( coeff ` G ) ` N ) = ( ( coeff ` G ) ` N ) ) |
44 |
35 38 40 40 41 42 43
|
ofval |
|- ( ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) /\ N e. NN0 ) -> ( ( ( coeff ` F ) oF - ( coeff ` G ) ) ` N ) = ( ( ( coeff ` G ) ` N ) - ( ( coeff ` G ) ` N ) ) ) |
45 |
32 44
|
mpdan |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( ( coeff ` F ) oF - ( coeff ` G ) ) ` N ) = ( ( ( coeff ` G ) ` N ) - ( ( coeff ` G ) ` N ) ) ) |
46 |
37 32
|
ffvelrnd |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( coeff ` G ) ` N ) e. CC ) |
47 |
46
|
subidd |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( ( coeff ` G ) ` N ) - ( ( coeff ` G ) ` N ) ) = 0 ) |
48 |
31 45 47
|
3eqtrd |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( coeff ` ( F oF - G ) ) ` N ) = 0 ) |
49 |
|
plysubcl |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) ) -> ( F oF - G ) e. ( Poly ` CC ) ) |
50 |
11 13 49
|
syl2an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) -> ( F oF - G ) e. ( Poly ` CC ) ) |
51 |
50
|
adantr |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( F oF - G ) e. ( Poly ` CC ) ) |
52 |
|
eqid |
|- ( deg ` ( F oF - G ) ) = ( deg ` ( F oF - G ) ) |
53 |
|
eqid |
|- ( coeff ` ( F oF - G ) ) = ( coeff ` ( F oF - G ) ) |
54 |
52 53
|
dgrlt |
|- ( ( ( F oF - G ) e. ( Poly ` CC ) /\ N e. NN0 ) -> ( ( ( F oF - G ) = 0p \/ ( deg ` ( F oF - G ) ) < N ) <-> ( ( deg ` ( F oF - G ) ) <_ N /\ ( ( coeff ` ( F oF - G ) ) ` N ) = 0 ) ) ) |
55 |
51 32 54
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( ( F oF - G ) = 0p \/ ( deg ` ( F oF - G ) ) < N ) <-> ( ( deg ` ( F oF - G ) ) <_ N /\ ( ( coeff ` ( F oF - G ) ) ` N ) = 0 ) ) ) |
56 |
25 48 55
|
mpbir2and |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( ( F oF - G ) = 0p \/ ( deg ` ( F oF - G ) ) < N ) ) |
57 |
56
|
ord |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( -. ( F oF - G ) = 0p -> ( deg ` ( F oF - G ) ) < N ) ) |
58 |
9 57
|
pm2.61d |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` T ) ) /\ ( ( deg ` G ) = N /\ N e. NN /\ ( ( coeff ` F ) ` N ) = ( ( coeff ` G ) ` N ) ) ) -> ( deg ` ( F oF - G ) ) < N ) |