| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrsub2.a |
|
| 2 |
|
simpr2 |
|
| 3 |
|
dgr0 |
|
| 4 |
|
nngt0 |
|
| 5 |
3 4
|
eqbrtrid |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
breq1d |
|
| 8 |
5 7
|
syl5ibrcom |
|
| 9 |
2 8
|
syl |
|
| 10 |
|
plyssc |
|
| 11 |
10
|
sseli |
|
| 12 |
|
plyssc |
|
| 13 |
12
|
sseli |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
14 15
|
dgrsub |
|
| 17 |
11 13 16
|
syl2an |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simpr1 |
|
| 20 |
1
|
eqcomi |
|
| 21 |
20
|
a1i |
|
| 22 |
19 21
|
ifeq12d |
|
| 23 |
|
ifid |
|
| 24 |
22 23
|
eqtrdi |
|
| 25 |
18 24
|
breqtrd |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
26 27
|
coesub |
|
| 29 |
11 13 28
|
syl2an |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
fveq1d |
|
| 32 |
2
|
nnnn0d |
|
| 33 |
26
|
coef3 |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
34
|
ffnd |
|
| 36 |
27
|
coef3 |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
37
|
ffnd |
|
| 39 |
|
nn0ex |
|
| 40 |
39
|
a1i |
|
| 41 |
|
inidm |
|
| 42 |
|
simplr3 |
|
| 43 |
|
eqidd |
|
| 44 |
35 38 40 40 41 42 43
|
ofval |
|
| 45 |
32 44
|
mpdan |
|
| 46 |
37 32
|
ffvelcdmd |
|
| 47 |
46
|
subidd |
|
| 48 |
31 45 47
|
3eqtrd |
|
| 49 |
|
plysubcl |
|
| 50 |
11 13 49
|
syl2an |
|
| 51 |
50
|
adantr |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
52 53
|
dgrlt |
|
| 55 |
51 32 54
|
syl2anc |
|
| 56 |
25 48 55
|
mpbir2and |
|
| 57 |
56
|
ord |
|
| 58 |
9 57
|
pm2.61d |
|