Step |
Hyp |
Ref |
Expression |
1 |
|
dgrsub2.a |
|
2 |
|
simpr2 |
|
3 |
|
dgr0 |
|
4 |
|
nngt0 |
|
5 |
3 4
|
eqbrtrid |
|
6 |
|
fveq2 |
|
7 |
6
|
breq1d |
|
8 |
5 7
|
syl5ibrcom |
|
9 |
2 8
|
syl |
|
10 |
|
plyssc |
|
11 |
10
|
sseli |
|
12 |
|
plyssc |
|
13 |
12
|
sseli |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 15
|
dgrsub |
|
17 |
11 13 16
|
syl2an |
|
18 |
17
|
adantr |
|
19 |
|
simpr1 |
|
20 |
1
|
eqcomi |
|
21 |
20
|
a1i |
|
22 |
19 21
|
ifeq12d |
|
23 |
|
ifid |
|
24 |
22 23
|
eqtrdi |
|
25 |
18 24
|
breqtrd |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
26 27
|
coesub |
|
29 |
11 13 28
|
syl2an |
|
30 |
29
|
adantr |
|
31 |
30
|
fveq1d |
|
32 |
2
|
nnnn0d |
|
33 |
26
|
coef3 |
|
34 |
33
|
ad2antrr |
|
35 |
34
|
ffnd |
|
36 |
27
|
coef3 |
|
37 |
36
|
ad2antlr |
|
38 |
37
|
ffnd |
|
39 |
|
nn0ex |
|
40 |
39
|
a1i |
|
41 |
|
inidm |
|
42 |
|
simplr3 |
|
43 |
|
eqidd |
|
44 |
35 38 40 40 41 42 43
|
ofval |
|
45 |
32 44
|
mpdan |
|
46 |
37 32
|
ffvelrnd |
|
47 |
46
|
subidd |
|
48 |
31 45 47
|
3eqtrd |
|
49 |
|
plysubcl |
|
50 |
11 13 49
|
syl2an |
|
51 |
50
|
adantr |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
52 53
|
dgrlt |
|
55 |
51 32 54
|
syl2anc |
|
56 |
25 48 55
|
mpbir2and |
|
57 |
56
|
ord |
|
58 |
9 57
|
pm2.61d |
|