Description: Two ways to say that the degree of F is strictly less than N . (Contributed by Mario Carneiro, 25-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dgreq0.1 | |
|
dgreq0.2 | |
||
Assertion | dgrlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgreq0.1 | |
|
2 | dgreq0.2 | |
|
3 | simpr | |
|
4 | 3 | fveq2d | |
5 | dgr0 | |
|
6 | 5 | eqcomi | |
7 | 4 1 6 | 3eqtr4g | |
8 | nn0ge0 | |
|
9 | 8 | ad2antlr | |
10 | 7 9 | eqbrtrd | |
11 | 3 | fveq2d | |
12 | coe0 | |
|
13 | 12 | eqcomi | |
14 | 11 2 13 | 3eqtr4g | |
15 | 14 | fveq1d | |
16 | c0ex | |
|
17 | 16 | fvconst2 | |
18 | 17 | ad2antlr | |
19 | 15 18 | eqtrd | |
20 | 10 19 | jca | |
21 | dgrcl | |
|
22 | 1 21 | eqeltrid | |
23 | 22 | nn0red | |
24 | nn0re | |
|
25 | ltle | |
|
26 | 23 24 25 | syl2an | |
27 | 26 | imp | |
28 | 2 1 | dgrub | |
29 | 28 | 3expia | |
30 | lenlt | |
|
31 | 24 23 30 | syl2anr | |
32 | 29 31 | sylibd | |
33 | 32 | necon4ad | |
34 | 33 | imp | |
35 | 27 34 | jca | |
36 | 20 35 | jaodan | |
37 | leloe | |
|
38 | 23 24 37 | syl2an | |
39 | 38 | biimpa | |
40 | 39 | adantrr | |
41 | fveq2 | |
|
42 | 1 2 | dgreq0 | |
43 | 42 | ad2antrr | |
44 | simprr | |
|
45 | 44 | eqeq2d | |
46 | 43 45 | bitr4d | |
47 | 41 46 | imbitrrid | |
48 | 47 | orim2d | |
49 | 40 48 | mpd | |
50 | 49 | orcomd | |
51 | 36 50 | impbida | |