| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgreq0.1 |
|
| 2 |
|
dgreq0.2 |
|
| 3 |
|
simpr |
|
| 4 |
3
|
fveq2d |
|
| 5 |
|
dgr0 |
|
| 6 |
5
|
eqcomi |
|
| 7 |
4 1 6
|
3eqtr4g |
|
| 8 |
|
nn0ge0 |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
7 9
|
eqbrtrd |
|
| 11 |
3
|
fveq2d |
|
| 12 |
|
coe0 |
|
| 13 |
12
|
eqcomi |
|
| 14 |
11 2 13
|
3eqtr4g |
|
| 15 |
14
|
fveq1d |
|
| 16 |
|
c0ex |
|
| 17 |
16
|
fvconst2 |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
15 18
|
eqtrd |
|
| 20 |
10 19
|
jca |
|
| 21 |
|
dgrcl |
|
| 22 |
1 21
|
eqeltrid |
|
| 23 |
22
|
nn0red |
|
| 24 |
|
nn0re |
|
| 25 |
|
ltle |
|
| 26 |
23 24 25
|
syl2an |
|
| 27 |
26
|
imp |
|
| 28 |
2 1
|
dgrub |
|
| 29 |
28
|
3expia |
|
| 30 |
|
lenlt |
|
| 31 |
24 23 30
|
syl2anr |
|
| 32 |
29 31
|
sylibd |
|
| 33 |
32
|
necon4ad |
|
| 34 |
33
|
imp |
|
| 35 |
27 34
|
jca |
|
| 36 |
20 35
|
jaodan |
|
| 37 |
|
leloe |
|
| 38 |
23 24 37
|
syl2an |
|
| 39 |
38
|
biimpa |
|
| 40 |
39
|
adantrr |
|
| 41 |
|
fveq2 |
|
| 42 |
1 2
|
dgreq0 |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simprr |
|
| 45 |
44
|
eqeq2d |
|
| 46 |
43 45
|
bitr4d |
|
| 47 |
41 46
|
imbitrrid |
|
| 48 |
47
|
orim2d |
|
| 49 |
40 48
|
mpd |
|
| 50 |
49
|
orcomd |
|
| 51 |
36 50
|
impbida |
|