Metamath Proof Explorer


Theorem dgrlt

Description: Two ways to say that the degree of F is strictly less than N . (Contributed by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses dgreq0.1 N=degF
dgreq0.2 A=coeffF
Assertion dgrlt FPolySM0F=0𝑝N<MNMAM=0

Proof

Step Hyp Ref Expression
1 dgreq0.1 N=degF
2 dgreq0.2 A=coeffF
3 simpr FPolySM0F=0𝑝F=0𝑝
4 3 fveq2d FPolySM0F=0𝑝degF=deg0𝑝
5 dgr0 deg0𝑝=0
6 5 eqcomi 0=deg0𝑝
7 4 1 6 3eqtr4g FPolySM0F=0𝑝N=0
8 nn0ge0 M00M
9 8 ad2antlr FPolySM0F=0𝑝0M
10 7 9 eqbrtrd FPolySM0F=0𝑝NM
11 3 fveq2d FPolySM0F=0𝑝coeffF=coeff0𝑝
12 coe0 coeff0𝑝=0×0
13 12 eqcomi 0×0=coeff0𝑝
14 11 2 13 3eqtr4g FPolySM0F=0𝑝A=0×0
15 14 fveq1d FPolySM0F=0𝑝AM=0×0M
16 c0ex 0V
17 16 fvconst2 M00×0M=0
18 17 ad2antlr FPolySM0F=0𝑝0×0M=0
19 15 18 eqtrd FPolySM0F=0𝑝AM=0
20 10 19 jca FPolySM0F=0𝑝NMAM=0
21 dgrcl FPolySdegF0
22 1 21 eqeltrid FPolySN0
23 22 nn0red FPolySN
24 nn0re M0M
25 ltle NMN<MNM
26 23 24 25 syl2an FPolySM0N<MNM
27 26 imp FPolySM0N<MNM
28 2 1 dgrub FPolySM0AM0MN
29 28 3expia FPolySM0AM0MN
30 lenlt MNMN¬N<M
31 24 23 30 syl2anr FPolySM0MN¬N<M
32 29 31 sylibd FPolySM0AM0¬N<M
33 32 necon4ad FPolySM0N<MAM=0
34 33 imp FPolySM0N<MAM=0
35 27 34 jca FPolySM0N<MNMAM=0
36 20 35 jaodan FPolySM0F=0𝑝N<MNMAM=0
37 leloe NMNMN<MN=M
38 23 24 37 syl2an FPolySM0NMN<MN=M
39 38 biimpa FPolySM0NMN<MN=M
40 39 adantrr FPolySM0NMAM=0N<MN=M
41 fveq2 N=MAN=AM
42 1 2 dgreq0 FPolySF=0𝑝AN=0
43 42 ad2antrr FPolySM0NMAM=0F=0𝑝AN=0
44 simprr FPolySM0NMAM=0AM=0
45 44 eqeq2d FPolySM0NMAM=0AN=AMAN=0
46 43 45 bitr4d FPolySM0NMAM=0F=0𝑝AN=AM
47 41 46 imbitrrid FPolySM0NMAM=0N=MF=0𝑝
48 47 orim2d FPolySM0NMAM=0N<MN=MN<MF=0𝑝
49 40 48 mpd FPolySM0NMAM=0N<MF=0𝑝
50 49 orcomd FPolySM0NMAM=0F=0𝑝N<M
51 36 50 impbida FPolySM0F=0𝑝N<MNMAM=0