| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgreq0.1 |
|
| 2 |
|
dgreq0.2 |
|
| 3 |
|
fveq2 |
|
| 4 |
2 3
|
eqtrid |
|
| 5 |
|
coe0 |
|
| 6 |
4 5
|
eqtrdi |
|
| 7 |
|
fveq2 |
|
| 8 |
1 7
|
eqtrid |
|
| 9 |
|
dgr0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
6 10
|
fveq12d |
|
| 12 |
|
0nn0 |
|
| 13 |
|
fvconst2g |
|
| 14 |
12 12 13
|
mp2an |
|
| 15 |
11 14
|
eqtrdi |
|
| 16 |
2
|
coefv0 |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
18
|
nnred |
|
| 20 |
19
|
ltm1d |
|
| 21 |
|
nnre |
|
| 22 |
21
|
adantl |
|
| 23 |
|
peano2rem |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
simpll |
|
| 26 |
|
nnm1nn0 |
|
| 27 |
26
|
adantl |
|
| 28 |
2 1
|
dgrub |
|
| 29 |
28
|
3expia |
|
| 30 |
29
|
ad2ant2rl |
|
| 31 |
|
simplr |
|
| 32 |
|
fveqeq2 |
|
| 33 |
31 32
|
syl5ibcom |
|
| 34 |
33
|
necon3d |
|
| 35 |
30 34
|
jcad |
|
| 36 |
|
nn0re |
|
| 37 |
36
|
ad2antll |
|
| 38 |
21
|
ad2antrl |
|
| 39 |
37 38
|
ltlend |
|
| 40 |
|
nn0z |
|
| 41 |
40
|
ad2antll |
|
| 42 |
|
nnz |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
|
zltlem1 |
|
| 45 |
41 43 44
|
syl2anc |
|
| 46 |
39 45
|
bitr3d |
|
| 47 |
35 46
|
sylibd |
|
| 48 |
47
|
expr |
|
| 49 |
48
|
ralrimiv |
|
| 50 |
2
|
coef3 |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
|
plyco0 |
|
| 53 |
27 51 52
|
syl2anc |
|
| 54 |
49 53
|
mpbird |
|
| 55 |
2 1
|
dgrlb |
|
| 56 |
25 27 54 55
|
syl3anc |
|
| 57 |
22 24 56
|
lensymd |
|
| 58 |
20 57
|
pm2.65da |
|
| 59 |
|
dgrcl |
|
| 60 |
1 59
|
eqeltrid |
|
| 61 |
60
|
adantr |
|
| 62 |
|
elnn0 |
|
| 63 |
61 62
|
sylib |
|
| 64 |
63
|
ord |
|
| 65 |
58 64
|
mpd |
|
| 66 |
65
|
fveq2d |
|
| 67 |
|
simpr |
|
| 68 |
17 66 67
|
3eqtr2d |
|
| 69 |
68
|
sneqd |
|
| 70 |
69
|
xpeq2d |
|
| 71 |
1 65
|
eqtr3id |
|
| 72 |
|
0dgrb |
|
| 73 |
72
|
adantr |
|
| 74 |
71 73
|
mpbid |
|
| 75 |
|
df-0p |
|
| 76 |
75
|
a1i |
|
| 77 |
70 74 76
|
3eqtr4d |
|
| 78 |
77
|
ex |
|
| 79 |
15 78
|
impbid2 |
|