Metamath Proof Explorer


Theorem dgreq0

Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014) (Proof shortened by Fan Zheng, 21-Jun-2016)

Ref Expression
Hypotheses dgreq0.1 N=degF
dgreq0.2 A=coeffF
Assertion dgreq0 FPolySF=0𝑝AN=0

Proof

Step Hyp Ref Expression
1 dgreq0.1 N=degF
2 dgreq0.2 A=coeffF
3 fveq2 F=0𝑝coeffF=coeff0𝑝
4 2 3 eqtrid F=0𝑝A=coeff0𝑝
5 coe0 coeff0𝑝=0×0
6 4 5 eqtrdi F=0𝑝A=0×0
7 fveq2 F=0𝑝degF=deg0𝑝
8 1 7 eqtrid F=0𝑝N=deg0𝑝
9 dgr0 deg0𝑝=0
10 8 9 eqtrdi F=0𝑝N=0
11 6 10 fveq12d F=0𝑝AN=0×00
12 0nn0 00
13 fvconst2g 00000×00=0
14 12 12 13 mp2an 0×00=0
15 11 14 eqtrdi F=0𝑝AN=0
16 2 coefv0 FPolySF0=A0
17 16 adantr FPolySAN=0F0=A0
18 simpr FPolySAN=0NN
19 18 nnred FPolySAN=0NN
20 19 ltm1d FPolySAN=0NN1<N
21 nnre NN
22 21 adantl FPolySAN=0NN
23 peano2rem NN1
24 22 23 syl FPolySAN=0NN1
25 simpll FPolySAN=0NFPolyS
26 nnm1nn0 NN10
27 26 adantl FPolySAN=0NN10
28 2 1 dgrub FPolySk0Ak0kN
29 28 3expia FPolySk0Ak0kN
30 29 ad2ant2rl FPolySAN=0Nk0Ak0kN
31 simplr FPolySAN=0Nk0AN=0
32 fveqeq2 N=kAN=0Ak=0
33 31 32 syl5ibcom FPolySAN=0Nk0N=kAk=0
34 33 necon3d FPolySAN=0Nk0Ak0Nk
35 30 34 jcad FPolySAN=0Nk0Ak0kNNk
36 nn0re k0k
37 36 ad2antll FPolySAN=0Nk0k
38 21 ad2antrl FPolySAN=0Nk0N
39 37 38 ltlend FPolySAN=0Nk0k<NkNNk
40 nn0z k0k
41 40 ad2antll FPolySAN=0Nk0k
42 nnz NN
43 42 ad2antrl FPolySAN=0Nk0N
44 zltlem1 kNk<NkN1
45 41 43 44 syl2anc FPolySAN=0Nk0k<NkN1
46 39 45 bitr3d FPolySAN=0Nk0kNNkkN1
47 35 46 sylibd FPolySAN=0Nk0Ak0kN1
48 47 expr FPolySAN=0Nk0Ak0kN1
49 48 ralrimiv FPolySAN=0Nk0Ak0kN1
50 2 coef3 FPolySA:0
51 50 ad2antrr FPolySAN=0NA:0
52 plyco0 N10A:0AN-1+1=0k0Ak0kN1
53 27 51 52 syl2anc FPolySAN=0NAN-1+1=0k0Ak0kN1
54 49 53 mpbird FPolySAN=0NAN-1+1=0
55 2 1 dgrlb FPolySN10AN-1+1=0NN1
56 25 27 54 55 syl3anc FPolySAN=0NNN1
57 22 24 56 lensymd FPolySAN=0N¬N1<N
58 20 57 pm2.65da FPolySAN=0¬N
59 dgrcl FPolySdegF0
60 1 59 eqeltrid FPolySN0
61 60 adantr FPolySAN=0N0
62 elnn0 N0NN=0
63 61 62 sylib FPolySAN=0NN=0
64 63 ord FPolySAN=0¬NN=0
65 58 64 mpd FPolySAN=0N=0
66 65 fveq2d FPolySAN=0AN=A0
67 simpr FPolySAN=0AN=0
68 17 66 67 3eqtr2d FPolySAN=0F0=0
69 68 sneqd FPolySAN=0F0=0
70 69 xpeq2d FPolySAN=0×F0=×0
71 1 65 eqtr3id FPolySAN=0degF=0
72 0dgrb FPolySdegF=0F=×F0
73 72 adantr FPolySAN=0degF=0F=×F0
74 71 73 mpbid FPolySAN=0F=×F0
75 df-0p 0𝑝=×0
76 75 a1i FPolySAN=00𝑝=×0
77 70 74 76 3eqtr4d FPolySAN=0F=0𝑝
78 77 ex FPolySAN=0F=0𝑝
79 15 78 impbid2 FPolySF=0𝑝AN=0