Metamath Proof Explorer


Theorem plysubcl

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion plysubcl FPolySGPolySFfGPoly

Proof

Step Hyp Ref Expression
1 plyssc PolySPoly
2 simpl FPolySGPolySFPolyS
3 1 2 sselid FPolySGPolySFPoly
4 simpr FPolySGPolySGPolyS
5 1 4 sselid FPolySGPolySGPoly
6 addcl xyx+y
7 6 adantl FPolySGPolySxyx+y
8 mulcl xyxy
9 8 adantl FPolySGPolySxyxy
10 neg1cn 1
11 10 a1i FPolySGPolyS1
12 3 5 7 9 11 plysub FPolySGPolySFfGPoly