Metamath Proof Explorer


Theorem plysubcl

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion plysubcl ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐹f𝐺 ) ∈ ( Poly ‘ ℂ ) )

Proof

Step Hyp Ref Expression
1 plyssc ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ )
2 simpl ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) )
3 1 2 sseldi ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → 𝐹 ∈ ( Poly ‘ ℂ ) )
4 simpr ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) )
5 1 4 sseldi ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → 𝐺 ∈ ( Poly ‘ ℂ ) )
6 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
7 6 adantl ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
8 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
9 8 adantl ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
10 neg1cn - 1 ∈ ℂ
11 10 a1i ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → - 1 ∈ ℂ )
12 3 5 7 9 11 plysub ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐹f𝐺 ) ∈ ( Poly ‘ ℂ ) )