| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coesub.1 |
|- A = ( coeff ` F ) |
| 2 |
|
coesub.2 |
|- B = ( coeff ` G ) |
| 3 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 4 |
|
simpl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> F e. ( Poly ` S ) ) |
| 5 |
3 4
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> F e. ( Poly ` CC ) ) |
| 6 |
|
ssid |
|- CC C_ CC |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
|
plyconst |
|- ( ( CC C_ CC /\ -u 1 e. CC ) -> ( CC X. { -u 1 } ) e. ( Poly ` CC ) ) |
| 9 |
6 7 8
|
mp2an |
|- ( CC X. { -u 1 } ) e. ( Poly ` CC ) |
| 10 |
|
simpr |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) |
| 11 |
3 10
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> G e. ( Poly ` CC ) ) |
| 12 |
|
plymulcl |
|- ( ( ( CC X. { -u 1 } ) e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) ) -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) |
| 13 |
9 11 12
|
sylancr |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) |
| 14 |
|
eqid |
|- ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) |
| 15 |
1 14
|
coeadd |
|- ( ( F e. ( Poly ` CC ) /\ ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) ) ) |
| 16 |
5 13 15
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) ) ) |
| 17 |
|
coemulc |
|- ( ( -u 1 e. CC /\ G e. ( Poly ` CC ) ) -> ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( ( NN0 X. { -u 1 } ) oF x. ( coeff ` G ) ) ) |
| 18 |
7 11 17
|
sylancr |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( ( NN0 X. { -u 1 } ) oF x. ( coeff ` G ) ) ) |
| 19 |
2
|
oveq2i |
|- ( ( NN0 X. { -u 1 } ) oF x. B ) = ( ( NN0 X. { -u 1 } ) oF x. ( coeff ` G ) ) |
| 20 |
18 19
|
eqtr4di |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( ( NN0 X. { -u 1 } ) oF x. B ) ) |
| 21 |
20
|
oveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( A oF + ( coeff ` ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) ) |
| 22 |
16 21
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) ) |
| 23 |
|
cnex |
|- CC e. _V |
| 24 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 25 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
| 26 |
|
ofnegsub |
|- ( ( CC e. _V /\ F : CC --> CC /\ G : CC --> CC ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| 27 |
23 24 25 26
|
mp3an3an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| 28 |
27
|
fveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( coeff ` ( F oF - G ) ) ) |
| 29 |
|
nn0ex |
|- NN0 e. _V |
| 30 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
| 31 |
2
|
coef3 |
|- ( G e. ( Poly ` S ) -> B : NN0 --> CC ) |
| 32 |
|
ofnegsub |
|- ( ( NN0 e. _V /\ A : NN0 --> CC /\ B : NN0 --> CC ) -> ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) = ( A oF - B ) ) |
| 33 |
29 30 31 32
|
mp3an3an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( A oF + ( ( NN0 X. { -u 1 } ) oF x. B ) ) = ( A oF - B ) ) |
| 34 |
22 28 33
|
3eqtr3d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF - G ) ) = ( A oF - B ) ) |