| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrsub.1 |
|- M = ( deg ` F ) |
| 2 |
|
dgrsub.2 |
|- N = ( deg ` G ) |
| 3 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 4 |
3
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
| 5 |
|
ssid |
|- CC C_ CC |
| 6 |
|
neg1cn |
|- -u 1 e. CC |
| 7 |
|
plyconst |
|- ( ( CC C_ CC /\ -u 1 e. CC ) -> ( CC X. { -u 1 } ) e. ( Poly ` CC ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( CC X. { -u 1 } ) e. ( Poly ` CC ) |
| 9 |
3
|
sseli |
|- ( G e. ( Poly ` S ) -> G e. ( Poly ` CC ) ) |
| 10 |
|
plymulcl |
|- ( ( ( CC X. { -u 1 } ) e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) ) -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) |
| 11 |
8 9 10
|
sylancr |
|- ( G e. ( Poly ` S ) -> ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) |
| 12 |
|
eqid |
|- ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) |
| 13 |
1 12
|
dgradd |
|- ( ( F e. ( Poly ` CC ) /\ ( ( CC X. { -u 1 } ) oF x. G ) e. ( Poly ` CC ) ) -> ( deg ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) <_ if ( M <_ ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) , ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) , M ) ) |
| 14 |
4 11 13
|
syl2an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) <_ if ( M <_ ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) , ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) , M ) ) |
| 15 |
|
cnex |
|- CC e. _V |
| 16 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 17 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
| 18 |
|
ofnegsub |
|- ( ( CC e. _V /\ F : CC --> CC /\ G : CC --> CC ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| 19 |
15 16 17 18
|
mp3an3an |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| 20 |
19
|
fveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF + ( ( CC X. { -u 1 } ) oF x. G ) ) ) = ( deg ` ( F oF - G ) ) ) |
| 21 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 22 |
|
dgrmulc |
|- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ G e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( deg ` G ) ) |
| 23 |
6 21 22
|
mp3an12 |
|- ( G e. ( Poly ` S ) -> ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) = ( deg ` G ) ) |
| 24 |
23 2
|
eqtr4di |
|- ( G e. ( Poly ` S ) -> ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) = N ) |
| 25 |
24
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) = N ) |
| 26 |
25
|
breq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( M <_ ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) <-> M <_ N ) ) |
| 27 |
26 25
|
ifbieq1d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> if ( M <_ ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) , ( deg ` ( ( CC X. { -u 1 } ) oF x. G ) ) , M ) = if ( M <_ N , N , M ) ) |
| 28 |
14 20 27
|
3brtr3d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF - G ) ) <_ if ( M <_ N , N , M ) ) |