| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrcolem1.1 |
|- N = ( deg ` G ) |
| 2 |
|
dgrcolem1.2 |
|- ( ph -> M e. NN ) |
| 3 |
|
dgrcolem1.3 |
|- ( ph -> N e. NN ) |
| 4 |
|
dgrcolem1.4 |
|- ( ph -> G e. ( Poly ` S ) ) |
| 5 |
|
oveq2 |
|- ( y = 1 -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ 1 ) ) |
| 6 |
5
|
mpteq2dv |
|- ( y = 1 -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) |
| 7 |
6
|
fveq2d |
|- ( y = 1 -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) ) |
| 8 |
|
oveq1 |
|- ( y = 1 -> ( y x. N ) = ( 1 x. N ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( y = 1 -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( 1 x. N ) ) ) |
| 10 |
9
|
imbi2d |
|- ( y = 1 -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( 1 x. N ) ) ) ) |
| 11 |
|
oveq2 |
|- ( y = d -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ d ) ) |
| 12 |
11
|
mpteq2dv |
|- ( y = d -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
| 13 |
12
|
fveq2d |
|- ( y = d -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) ) |
| 14 |
|
oveq1 |
|- ( y = d -> ( y x. N ) = ( d x. N ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( y = d -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) ) |
| 16 |
15
|
imbi2d |
|- ( y = d -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) ) ) |
| 17 |
|
oveq2 |
|- ( y = ( d + 1 ) -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ ( d + 1 ) ) ) |
| 18 |
17
|
mpteq2dv |
|- ( y = ( d + 1 ) -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) |
| 19 |
18
|
fveq2d |
|- ( y = ( d + 1 ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) ) |
| 20 |
|
oveq1 |
|- ( y = ( d + 1 ) -> ( y x. N ) = ( ( d + 1 ) x. N ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( y = ( d + 1 ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) |
| 22 |
21
|
imbi2d |
|- ( y = ( d + 1 ) -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) ) |
| 23 |
|
oveq2 |
|- ( y = M -> ( ( G ` x ) ^ y ) = ( ( G ` x ) ^ M ) ) |
| 24 |
23
|
mpteq2dv |
|- ( y = M -> ( x e. CC |-> ( ( G ` x ) ^ y ) ) = ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) |
| 25 |
24
|
fveq2d |
|- ( y = M -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) ) |
| 26 |
|
oveq1 |
|- ( y = M -> ( y x. N ) = ( M x. N ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( y = M -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) <-> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) ) |
| 28 |
27
|
imbi2d |
|- ( y = M -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ y ) ) ) = ( y x. N ) ) <-> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) ) ) |
| 29 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
| 30 |
4 29
|
syl |
|- ( ph -> G : CC --> CC ) |
| 31 |
30
|
ffvelcdmda |
|- ( ( ph /\ x e. CC ) -> ( G ` x ) e. CC ) |
| 32 |
31
|
exp1d |
|- ( ( ph /\ x e. CC ) -> ( ( G ` x ) ^ 1 ) = ( G ` x ) ) |
| 33 |
32
|
mpteq2dva |
|- ( ph -> ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) = ( x e. CC |-> ( G ` x ) ) ) |
| 34 |
30
|
feqmptd |
|- ( ph -> G = ( x e. CC |-> ( G ` x ) ) ) |
| 35 |
33 34
|
eqtr4d |
|- ( ph -> ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) = G ) |
| 36 |
35
|
fveq2d |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( deg ` G ) ) |
| 37 |
36 1
|
eqtr4di |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = N ) |
| 38 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
| 39 |
38
|
mullidd |
|- ( ph -> ( 1 x. N ) = N ) |
| 40 |
37 39
|
eqtr4d |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ 1 ) ) ) = ( 1 x. N ) ) |
| 41 |
31
|
adantlr |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> ( G ` x ) e. CC ) |
| 42 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ d e. NN ) -> d e. NN0 ) |
| 44 |
43
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> d e. NN0 ) |
| 45 |
41 44
|
expp1d |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> ( ( G ` x ) ^ ( d + 1 ) ) = ( ( ( G ` x ) ^ d ) x. ( G ` x ) ) ) |
| 46 |
45
|
mpteq2dva |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) = ( x e. CC |-> ( ( ( G ` x ) ^ d ) x. ( G ` x ) ) ) ) |
| 47 |
|
cnex |
|- CC e. _V |
| 48 |
47
|
a1i |
|- ( ( ph /\ d e. NN ) -> CC e. _V ) |
| 49 |
|
ovexd |
|- ( ( ( ph /\ d e. NN ) /\ x e. CC ) -> ( ( G ` x ) ^ d ) e. _V ) |
| 50 |
|
eqidd |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) = ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
| 51 |
34
|
adantr |
|- ( ( ph /\ d e. NN ) -> G = ( x e. CC |-> ( G ` x ) ) ) |
| 52 |
48 49 41 50 51
|
offval2 |
|- ( ( ph /\ d e. NN ) -> ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) = ( x e. CC |-> ( ( ( G ` x ) ^ d ) x. ( G ` x ) ) ) ) |
| 53 |
46 52
|
eqtr4d |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) = ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ph /\ d e. NN ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) ) |
| 56 |
|
oveq1 |
|- ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) = ( ( d x. N ) + N ) ) |
| 57 |
56
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) = ( ( d x. N ) + N ) ) |
| 58 |
|
eqidd |
|- ( ( ph /\ d e. NN ) -> ( y e. CC |-> ( y ^ d ) ) = ( y e. CC |-> ( y ^ d ) ) ) |
| 59 |
|
oveq1 |
|- ( y = ( G ` x ) -> ( y ^ d ) = ( ( G ` x ) ^ d ) ) |
| 60 |
41 51 58 59
|
fmptco |
|- ( ( ph /\ d e. NN ) -> ( ( y e. CC |-> ( y ^ d ) ) o. G ) = ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
| 61 |
|
ssidd |
|- ( ( ph /\ d e. NN ) -> CC C_ CC ) |
| 62 |
|
1cnd |
|- ( ( ph /\ d e. NN ) -> 1 e. CC ) |
| 63 |
|
plypow |
|- ( ( CC C_ CC /\ 1 e. CC /\ d e. NN0 ) -> ( y e. CC |-> ( y ^ d ) ) e. ( Poly ` CC ) ) |
| 64 |
61 62 43 63
|
syl3anc |
|- ( ( ph /\ d e. NN ) -> ( y e. CC |-> ( y ^ d ) ) e. ( Poly ` CC ) ) |
| 65 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 66 |
4
|
adantr |
|- ( ( ph /\ d e. NN ) -> G e. ( Poly ` S ) ) |
| 67 |
65 66
|
sselid |
|- ( ( ph /\ d e. NN ) -> G e. ( Poly ` CC ) ) |
| 68 |
|
addcl |
|- ( ( z e. CC /\ w e. CC ) -> ( z + w ) e. CC ) |
| 69 |
68
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ ( z e. CC /\ w e. CC ) ) -> ( z + w ) e. CC ) |
| 70 |
|
mulcl |
|- ( ( z e. CC /\ w e. CC ) -> ( z x. w ) e. CC ) |
| 71 |
70
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ ( z e. CC /\ w e. CC ) ) -> ( z x. w ) e. CC ) |
| 72 |
64 67 69 71
|
plyco |
|- ( ( ph /\ d e. NN ) -> ( ( y e. CC |-> ( y ^ d ) ) o. G ) e. ( Poly ` CC ) ) |
| 73 |
60 72
|
eqeltrrd |
|- ( ( ph /\ d e. NN ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) e. ( Poly ` CC ) ) |
| 74 |
73
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) e. ( Poly ` CC ) ) |
| 75 |
|
simpr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) |
| 76 |
|
simpr |
|- ( ( ph /\ d e. NN ) -> d e. NN ) |
| 77 |
3
|
adantr |
|- ( ( ph /\ d e. NN ) -> N e. NN ) |
| 78 |
76 77
|
nnmulcld |
|- ( ( ph /\ d e. NN ) -> ( d x. N ) e. NN ) |
| 79 |
78
|
nnne0d |
|- ( ( ph /\ d e. NN ) -> ( d x. N ) =/= 0 ) |
| 80 |
79
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( d x. N ) =/= 0 ) |
| 81 |
75 80
|
eqnetrd |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) =/= 0 ) |
| 82 |
|
fveq2 |
|- ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) = 0p -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( deg ` 0p ) ) |
| 83 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 84 |
82 83
|
eqtrdi |
|- ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) = 0p -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = 0 ) |
| 85 |
84
|
necon3i |
|- ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) =/= 0 -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) =/= 0p ) |
| 86 |
81 85
|
syl |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( x e. CC |-> ( ( G ` x ) ^ d ) ) =/= 0p ) |
| 87 |
67
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> G e. ( Poly ` CC ) ) |
| 88 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 89 |
|
fveq2 |
|- ( G = 0p -> ( deg ` G ) = ( deg ` 0p ) ) |
| 90 |
89 83
|
eqtrdi |
|- ( G = 0p -> ( deg ` G ) = 0 ) |
| 91 |
1 90
|
eqtrid |
|- ( G = 0p -> N = 0 ) |
| 92 |
91
|
necon3i |
|- ( N =/= 0 -> G =/= 0p ) |
| 93 |
88 92
|
syl |
|- ( ph -> G =/= 0p ) |
| 94 |
93
|
adantr |
|- ( ( ph /\ d e. NN ) -> G =/= 0p ) |
| 95 |
94
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> G =/= 0p ) |
| 96 |
|
eqid |
|- ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) |
| 97 |
96 1
|
dgrmul |
|- ( ( ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) e. ( Poly ` CC ) /\ ( x e. CC |-> ( ( G ` x ) ^ d ) ) =/= 0p ) /\ ( G e. ( Poly ` CC ) /\ G =/= 0p ) ) -> ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) = ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) ) |
| 98 |
74 86 87 95 97
|
syl22anc |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) = ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) + N ) ) |
| 99 |
|
nncn |
|- ( d e. NN -> d e. CC ) |
| 100 |
99
|
adantl |
|- ( ( ph /\ d e. NN ) -> d e. CC ) |
| 101 |
38
|
adantr |
|- ( ( ph /\ d e. NN ) -> N e. CC ) |
| 102 |
100 101
|
adddirp1d |
|- ( ( ph /\ d e. NN ) -> ( ( d + 1 ) x. N ) = ( ( d x. N ) + N ) ) |
| 103 |
102
|
adantr |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ( d + 1 ) x. N ) = ( ( d x. N ) + N ) ) |
| 104 |
57 98 103
|
3eqtr4rd |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ( d + 1 ) x. N ) = ( deg ` ( ( x e. CC |-> ( ( G ` x ) ^ d ) ) oF x. G ) ) ) |
| 105 |
55 104
|
eqtr4d |
|- ( ( ( ph /\ d e. NN ) /\ ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) |
| 106 |
105
|
ex |
|- ( ( ph /\ d e. NN ) -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) |
| 107 |
106
|
expcom |
|- ( d e. NN -> ( ph -> ( ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) ) |
| 108 |
107
|
a2d |
|- ( d e. NN -> ( ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ d ) ) ) = ( d x. N ) ) -> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ ( d + 1 ) ) ) ) = ( ( d + 1 ) x. N ) ) ) ) |
| 109 |
10 16 22 28 40 108
|
nnind |
|- ( M e. NN -> ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) ) |
| 110 |
2 109
|
mpcom |
|- ( ph -> ( deg ` ( x e. CC |-> ( ( G ` x ) ^ M ) ) ) = ( M x. N ) ) |