Step |
Hyp |
Ref |
Expression |
1 |
|
dgrcolem1.1 |
|
2 |
|
dgrcolem1.2 |
|
3 |
|
dgrcolem1.3 |
|
4 |
|
dgrcolem1.4 |
|
5 |
|
oveq2 |
|
6 |
5
|
mpteq2dv |
|
7 |
6
|
fveq2d |
|
8 |
|
oveq1 |
|
9 |
7 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
11
|
mpteq2dv |
|
13 |
12
|
fveq2d |
|
14 |
|
oveq1 |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
oveq2 |
|
18 |
17
|
mpteq2dv |
|
19 |
18
|
fveq2d |
|
20 |
|
oveq1 |
|
21 |
19 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
oveq2 |
|
24 |
23
|
mpteq2dv |
|
25 |
24
|
fveq2d |
|
26 |
|
oveq1 |
|
27 |
25 26
|
eqeq12d |
|
28 |
27
|
imbi2d |
|
29 |
|
plyf |
|
30 |
4 29
|
syl |
|
31 |
30
|
ffvelrnda |
|
32 |
31
|
exp1d |
|
33 |
32
|
mpteq2dva |
|
34 |
30
|
feqmptd |
|
35 |
33 34
|
eqtr4d |
|
36 |
35
|
fveq2d |
|
37 |
36 1
|
eqtr4di |
|
38 |
3
|
nncnd |
|
39 |
38
|
mulid2d |
|
40 |
37 39
|
eqtr4d |
|
41 |
31
|
adantlr |
|
42 |
|
nnnn0 |
|
43 |
42
|
adantl |
|
44 |
43
|
adantr |
|
45 |
41 44
|
expp1d |
|
46 |
45
|
mpteq2dva |
|
47 |
|
cnex |
|
48 |
47
|
a1i |
|
49 |
|
ovexd |
|
50 |
|
eqidd |
|
51 |
34
|
adantr |
|
52 |
48 49 41 50 51
|
offval2 |
|
53 |
46 52
|
eqtr4d |
|
54 |
53
|
fveq2d |
|
55 |
54
|
adantr |
|
56 |
|
oveq1 |
|
57 |
56
|
adantl |
|
58 |
|
eqidd |
|
59 |
|
oveq1 |
|
60 |
41 51 58 59
|
fmptco |
|
61 |
|
ssidd |
|
62 |
|
1cnd |
|
63 |
|
plypow |
|
64 |
61 62 43 63
|
syl3anc |
|
65 |
|
plyssc |
|
66 |
4
|
adantr |
|
67 |
65 66
|
sselid |
|
68 |
|
addcl |
|
69 |
68
|
adantl |
|
70 |
|
mulcl |
|
71 |
70
|
adantl |
|
72 |
64 67 69 71
|
plyco |
|
73 |
60 72
|
eqeltrrd |
|
74 |
73
|
adantr |
|
75 |
|
simpr |
|
76 |
|
simpr |
|
77 |
3
|
adantr |
|
78 |
76 77
|
nnmulcld |
|
79 |
78
|
nnne0d |
|
80 |
79
|
adantr |
|
81 |
75 80
|
eqnetrd |
|
82 |
|
fveq2 |
|
83 |
|
dgr0 |
|
84 |
82 83
|
eqtrdi |
|
85 |
84
|
necon3i |
|
86 |
81 85
|
syl |
|
87 |
67
|
adantr |
|
88 |
3
|
nnne0d |
|
89 |
|
fveq2 |
|
90 |
89 83
|
eqtrdi |
|
91 |
1 90
|
eqtrid |
|
92 |
91
|
necon3i |
|
93 |
88 92
|
syl |
|
94 |
93
|
adantr |
|
95 |
94
|
adantr |
|
96 |
|
eqid |
|
97 |
96 1
|
dgrmul |
|
98 |
74 86 87 95 97
|
syl22anc |
|
99 |
|
nncn |
|
100 |
99
|
adantl |
|
101 |
38
|
adantr |
|
102 |
100 101
|
adddirp1d |
|
103 |
102
|
adantr |
|
104 |
57 98 103
|
3eqtr4rd |
|
105 |
55 104
|
eqtr4d |
|
106 |
105
|
ex |
|
107 |
106
|
expcom |
|
108 |
107
|
a2d |
|
109 |
10 16 22 28 40 108
|
nnind |
|
110 |
2 109
|
mpcom |
|