| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrcolem1.1 |
|
| 2 |
|
dgrcolem1.2 |
|
| 3 |
|
dgrcolem1.3 |
|
| 4 |
|
dgrcolem1.4 |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
mpteq2dv |
|
| 7 |
6
|
fveq2d |
|
| 8 |
|
oveq1 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
mpteq2dv |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
oveq1 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
mpteq2dv |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
oveq1 |
|
| 21 |
19 20
|
eqeq12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
mpteq2dv |
|
| 25 |
24
|
fveq2d |
|
| 26 |
|
oveq1 |
|
| 27 |
25 26
|
eqeq12d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
plyf |
|
| 30 |
4 29
|
syl |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
31
|
exp1d |
|
| 33 |
32
|
mpteq2dva |
|
| 34 |
30
|
feqmptd |
|
| 35 |
33 34
|
eqtr4d |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36 1
|
eqtr4di |
|
| 38 |
3
|
nncnd |
|
| 39 |
38
|
mullidd |
|
| 40 |
37 39
|
eqtr4d |
|
| 41 |
31
|
adantlr |
|
| 42 |
|
nnnn0 |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
adantr |
|
| 45 |
41 44
|
expp1d |
|
| 46 |
45
|
mpteq2dva |
|
| 47 |
|
cnex |
|
| 48 |
47
|
a1i |
|
| 49 |
|
ovexd |
|
| 50 |
|
eqidd |
|
| 51 |
34
|
adantr |
|
| 52 |
48 49 41 50 51
|
offval2 |
|
| 53 |
46 52
|
eqtr4d |
|
| 54 |
53
|
fveq2d |
|
| 55 |
54
|
adantr |
|
| 56 |
|
oveq1 |
|
| 57 |
56
|
adantl |
|
| 58 |
|
eqidd |
|
| 59 |
|
oveq1 |
|
| 60 |
41 51 58 59
|
fmptco |
|
| 61 |
|
ssidd |
|
| 62 |
|
1cnd |
|
| 63 |
|
plypow |
|
| 64 |
61 62 43 63
|
syl3anc |
|
| 65 |
|
plyssc |
|
| 66 |
4
|
adantr |
|
| 67 |
65 66
|
sselid |
|
| 68 |
|
addcl |
|
| 69 |
68
|
adantl |
|
| 70 |
|
mulcl |
|
| 71 |
70
|
adantl |
|
| 72 |
64 67 69 71
|
plyco |
|
| 73 |
60 72
|
eqeltrrd |
|
| 74 |
73
|
adantr |
|
| 75 |
|
simpr |
|
| 76 |
|
simpr |
|
| 77 |
3
|
adantr |
|
| 78 |
76 77
|
nnmulcld |
|
| 79 |
78
|
nnne0d |
|
| 80 |
79
|
adantr |
|
| 81 |
75 80
|
eqnetrd |
|
| 82 |
|
fveq2 |
|
| 83 |
|
dgr0 |
|
| 84 |
82 83
|
eqtrdi |
|
| 85 |
84
|
necon3i |
|
| 86 |
81 85
|
syl |
|
| 87 |
67
|
adantr |
|
| 88 |
3
|
nnne0d |
|
| 89 |
|
fveq2 |
|
| 90 |
89 83
|
eqtrdi |
|
| 91 |
1 90
|
eqtrid |
|
| 92 |
91
|
necon3i |
|
| 93 |
88 92
|
syl |
|
| 94 |
93
|
adantr |
|
| 95 |
94
|
adantr |
|
| 96 |
|
eqid |
|
| 97 |
96 1
|
dgrmul |
|
| 98 |
74 86 87 95 97
|
syl22anc |
|
| 99 |
|
nncn |
|
| 100 |
99
|
adantl |
|
| 101 |
38
|
adantr |
|
| 102 |
100 101
|
adddirp1d |
|
| 103 |
102
|
adantr |
|
| 104 |
57 98 103
|
3eqtr4rd |
|
| 105 |
55 104
|
eqtr4d |
|
| 106 |
105
|
ex |
|
| 107 |
106
|
expcom |
|
| 108 |
107
|
a2d |
|
| 109 |
10 16 22 28 40 108
|
nnind |
|
| 110 |
2 109
|
mpcom |
|