| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgradd.1 |
|
| 2 |
|
dgradd.2 |
|
| 3 |
1 2
|
dgrmul2 |
|
| 4 |
3
|
ad2ant2r |
|
| 5 |
|
plymulcl |
|
| 6 |
5
|
ad2ant2r |
|
| 7 |
|
dgrcl |
|
| 8 |
1 7
|
eqeltrid |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
dgrcl |
|
| 11 |
2 10
|
eqeltrid |
|
| 12 |
11
|
ad2antrl |
|
| 13 |
9 12
|
nn0addcld |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
14 15 1 2
|
coemulhi |
|
| 17 |
16
|
ad2ant2r |
|
| 18 |
14
|
coef3 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
19 9
|
ffvelcdmd |
|
| 21 |
15
|
coef3 |
|
| 22 |
21
|
ad2antrl |
|
| 23 |
22 12
|
ffvelcdmd |
|
| 24 |
1 14
|
dgreq0 |
|
| 25 |
24
|
necon3bid |
|
| 26 |
25
|
biimpa |
|
| 27 |
26
|
adantr |
|
| 28 |
2 15
|
dgreq0 |
|
| 29 |
28
|
necon3bid |
|
| 30 |
29
|
biimpa |
|
| 31 |
30
|
adantl |
|
| 32 |
20 23 27 31
|
mulne0d |
|
| 33 |
17 32
|
eqnetrd |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
34 35
|
dgrub |
|
| 37 |
6 13 33 36
|
syl3anc |
|
| 38 |
|
dgrcl |
|
| 39 |
6 38
|
syl |
|
| 40 |
39
|
nn0red |
|
| 41 |
13
|
nn0red |
|
| 42 |
40 41
|
letri3d |
|
| 43 |
4 37 42
|
mpbir2and |
|