Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dgradd.1 | |
|
dgradd.2 | |
||
Assertion | dgrmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgradd.1 | |
|
2 | dgradd.2 | |
|
3 | 1 2 | dgrmul2 | |
4 | 3 | ad2ant2r | |
5 | plymulcl | |
|
6 | 5 | ad2ant2r | |
7 | dgrcl | |
|
8 | 1 7 | eqeltrid | |
9 | 8 | ad2antrr | |
10 | dgrcl | |
|
11 | 2 10 | eqeltrid | |
12 | 11 | ad2antrl | |
13 | 9 12 | nn0addcld | |
14 | eqid | |
|
15 | eqid | |
|
16 | 14 15 1 2 | coemulhi | |
17 | 16 | ad2ant2r | |
18 | 14 | coef3 | |
19 | 18 | ad2antrr | |
20 | 19 9 | ffvelcdmd | |
21 | 15 | coef3 | |
22 | 21 | ad2antrl | |
23 | 22 12 | ffvelcdmd | |
24 | 1 14 | dgreq0 | |
25 | 24 | necon3bid | |
26 | 25 | biimpa | |
27 | 26 | adantr | |
28 | 2 15 | dgreq0 | |
29 | 28 | necon3bid | |
30 | 29 | biimpa | |
31 | 30 | adantl | |
32 | 20 23 27 31 | mulne0d | |
33 | 17 32 | eqnetrd | |
34 | eqid | |
|
35 | eqid | |
|
36 | 34 35 | dgrub | |
37 | 6 13 33 36 | syl3anc | |
38 | dgrcl | |
|
39 | 6 38 | syl | |
40 | 39 | nn0red | |
41 | 13 | nn0red | |
42 | 40 41 | letri3d | |
43 | 4 37 42 | mpbir2and | |