Metamath Proof Explorer


Theorem dgrmul

Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses dgradd.1 M=degF
dgradd.2 N=degG
Assertion dgrmul FPolySF0𝑝GPolySG0𝑝degF×fG=M+N

Proof

Step Hyp Ref Expression
1 dgradd.1 M=degF
2 dgradd.2 N=degG
3 1 2 dgrmul2 FPolySGPolySdegF×fGM+N
4 3 ad2ant2r FPolySF0𝑝GPolySG0𝑝degF×fGM+N
5 plymulcl FPolySGPolySF×fGPoly
6 5 ad2ant2r FPolySF0𝑝GPolySG0𝑝F×fGPoly
7 dgrcl FPolySdegF0
8 1 7 eqeltrid FPolySM0
9 8 ad2antrr FPolySF0𝑝GPolySG0𝑝M0
10 dgrcl GPolySdegG0
11 2 10 eqeltrid GPolySN0
12 11 ad2antrl FPolySF0𝑝GPolySG0𝑝N0
13 9 12 nn0addcld FPolySF0𝑝GPolySG0𝑝M+N0
14 eqid coeffF=coeffF
15 eqid coeffG=coeffG
16 14 15 1 2 coemulhi FPolySGPolyScoeffF×fGM+N=coeffFMcoeffGN
17 16 ad2ant2r FPolySF0𝑝GPolySG0𝑝coeffF×fGM+N=coeffFMcoeffGN
18 14 coef3 FPolyScoeffF:0
19 18 ad2antrr FPolySF0𝑝GPolySG0𝑝coeffF:0
20 19 9 ffvelcdmd FPolySF0𝑝GPolySG0𝑝coeffFM
21 15 coef3 GPolyScoeffG:0
22 21 ad2antrl FPolySF0𝑝GPolySG0𝑝coeffG:0
23 22 12 ffvelcdmd FPolySF0𝑝GPolySG0𝑝coeffGN
24 1 14 dgreq0 FPolySF=0𝑝coeffFM=0
25 24 necon3bid FPolySF0𝑝coeffFM0
26 25 biimpa FPolySF0𝑝coeffFM0
27 26 adantr FPolySF0𝑝GPolySG0𝑝coeffFM0
28 2 15 dgreq0 GPolySG=0𝑝coeffGN=0
29 28 necon3bid GPolySG0𝑝coeffGN0
30 29 biimpa GPolySG0𝑝coeffGN0
31 30 adantl FPolySF0𝑝GPolySG0𝑝coeffGN0
32 20 23 27 31 mulne0d FPolySF0𝑝GPolySG0𝑝coeffFMcoeffGN0
33 17 32 eqnetrd FPolySF0𝑝GPolySG0𝑝coeffF×fGM+N0
34 eqid coeffF×fG=coeffF×fG
35 eqid degF×fG=degF×fG
36 34 35 dgrub F×fGPolyM+N0coeffF×fGM+N0M+NdegF×fG
37 6 13 33 36 syl3anc FPolySF0𝑝GPolySG0𝑝M+NdegF×fG
38 dgrcl F×fGPolydegF×fG0
39 6 38 syl FPolySF0𝑝GPolySG0𝑝degF×fG0
40 39 nn0red FPolySF0𝑝GPolySG0𝑝degF×fG
41 13 nn0red FPolySF0𝑝GPolySG0𝑝M+N
42 40 41 letri3d FPolySF0𝑝GPolySG0𝑝degF×fG=M+NdegF×fGM+NM+NdegF×fG
43 4 37 42 mpbir2and FPolySF0𝑝GPolySG0𝑝degF×fG=M+N