Metamath Proof Explorer


Theorem dgrmulc

Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion dgrmulc AA0FPolySdeg×A×fF=degF

Proof

Step Hyp Ref Expression
1 oveq2 F=0𝑝×A×fF=×A×f0𝑝
2 1 fveq2d F=0𝑝deg×A×fF=deg×A×f0𝑝
3 fveq2 F=0𝑝degF=deg0𝑝
4 dgr0 deg0𝑝=0
5 3 4 eqtrdi F=0𝑝degF=0
6 2 5 eqeq12d F=0𝑝deg×A×fF=degFdeg×A×f0𝑝=0
7 ssid
8 simpl1 AA0FPolySF0𝑝A
9 plyconst A×APoly
10 7 8 9 sylancr AA0FPolySF0𝑝×APoly
11 0cn 0
12 fvconst2g A0×A0=A
13 8 11 12 sylancl AA0FPolySF0𝑝×A0=A
14 simpl2 AA0FPolySF0𝑝A0
15 13 14 eqnetrd AA0FPolySF0𝑝×A00
16 ne0p 0×A00×A0𝑝
17 11 15 16 sylancr AA0FPolySF0𝑝×A0𝑝
18 plyssc PolySPoly
19 simpl3 AA0FPolySF0𝑝FPolyS
20 18 19 sselid AA0FPolySF0𝑝FPoly
21 simpr AA0FPolySF0𝑝F0𝑝
22 eqid deg×A=deg×A
23 eqid degF=degF
24 22 23 dgrmul ×APoly×A0𝑝FPolyF0𝑝deg×A×fF=deg×A+degF
25 10 17 20 21 24 syl22anc AA0FPolySF0𝑝deg×A×fF=deg×A+degF
26 0dgr Adeg×A=0
27 8 26 syl AA0FPolySF0𝑝deg×A=0
28 27 oveq1d AA0FPolySF0𝑝deg×A+degF=0+degF
29 dgrcl FPolySdegF0
30 19 29 syl AA0FPolySF0𝑝degF0
31 30 nn0cnd AA0FPolySF0𝑝degF
32 31 addlidd AA0FPolySF0𝑝0+degF=degF
33 25 28 32 3eqtrd AA0FPolySF0𝑝deg×A×fF=degF
34 cnex V
35 34 a1i AA0FPolySV
36 simp1 AA0FPolySA
37 11 a1i AA0FPolyS0
38 35 36 37 ofc12 AA0FPolyS×A×f×0=×A0
39 36 mul01d AA0FPolySA0=0
40 39 sneqd AA0FPolySA0=0
41 40 xpeq2d AA0FPolyS×A0=×0
42 38 41 eqtrd AA0FPolyS×A×f×0=×0
43 df-0p 0𝑝=×0
44 43 oveq2i ×A×f0𝑝=×A×f×0
45 42 44 43 3eqtr4g AA0FPolyS×A×f0𝑝=0𝑝
46 45 fveq2d AA0FPolySdeg×A×f0𝑝=deg0𝑝
47 46 4 eqtrdi AA0FPolySdeg×A×f0𝑝=0
48 6 33 47 pm2.61ne AA0FPolySdeg×A×fF=degF