| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
fveq2d |
|
| 3 |
|
fveq2 |
|
| 4 |
|
dgr0 |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
2 5
|
eqeq12d |
|
| 7 |
|
ssid |
|
| 8 |
|
simpl1 |
|
| 9 |
|
plyconst |
|
| 10 |
7 8 9
|
sylancr |
|
| 11 |
|
0cn |
|
| 12 |
|
fvconst2g |
|
| 13 |
8 11 12
|
sylancl |
|
| 14 |
|
simpl2 |
|
| 15 |
13 14
|
eqnetrd |
|
| 16 |
|
ne0p |
|
| 17 |
11 15 16
|
sylancr |
|
| 18 |
|
plyssc |
|
| 19 |
|
simpl3 |
|
| 20 |
18 19
|
sselid |
|
| 21 |
|
simpr |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
22 23
|
dgrmul |
|
| 25 |
10 17 20 21 24
|
syl22anc |
|
| 26 |
|
0dgr |
|
| 27 |
8 26
|
syl |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
dgrcl |
|
| 30 |
19 29
|
syl |
|
| 31 |
30
|
nn0cnd |
|
| 32 |
31
|
addlidd |
|
| 33 |
25 28 32
|
3eqtrd |
|
| 34 |
|
cnex |
|
| 35 |
34
|
a1i |
|
| 36 |
|
simp1 |
|
| 37 |
11
|
a1i |
|
| 38 |
35 36 37
|
ofc12 |
|
| 39 |
36
|
mul01d |
|
| 40 |
39
|
sneqd |
|
| 41 |
40
|
xpeq2d |
|
| 42 |
38 41
|
eqtrd |
|
| 43 |
|
df-0p |
|
| 44 |
43
|
oveq2i |
|
| 45 |
42 44 43
|
3eqtr4g |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46 4
|
eqtrdi |
|
| 48 |
6 33 47
|
pm2.61ne |
|