| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( F = 0p -> ( ( CC X. { A } ) oF x. F ) = ( ( CC X. { A } ) oF x. 0p ) ) |
| 2 |
1
|
fveq2d |
|- ( F = 0p -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) ) |
| 3 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
| 4 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 5 |
3 4
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
| 6 |
2 5
|
eqeq12d |
|- ( F = 0p -> ( ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` F ) <-> ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) = 0 ) ) |
| 7 |
|
ssid |
|- CC C_ CC |
| 8 |
|
simpl1 |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> A e. CC ) |
| 9 |
|
plyconst |
|- ( ( CC C_ CC /\ A e. CC ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
| 10 |
7 8 9
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( CC X. { A } ) e. ( Poly ` CC ) ) |
| 11 |
|
0cn |
|- 0 e. CC |
| 12 |
|
fvconst2g |
|- ( ( A e. CC /\ 0 e. CC ) -> ( ( CC X. { A } ) ` 0 ) = A ) |
| 13 |
8 11 12
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( ( CC X. { A } ) ` 0 ) = A ) |
| 14 |
|
simpl2 |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> A =/= 0 ) |
| 15 |
13 14
|
eqnetrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( ( CC X. { A } ) ` 0 ) =/= 0 ) |
| 16 |
|
ne0p |
|- ( ( 0 e. CC /\ ( ( CC X. { A } ) ` 0 ) =/= 0 ) -> ( CC X. { A } ) =/= 0p ) |
| 17 |
11 15 16
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( CC X. { A } ) =/= 0p ) |
| 18 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 19 |
|
simpl3 |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> F e. ( Poly ` S ) ) |
| 20 |
18 19
|
sselid |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> F e. ( Poly ` CC ) ) |
| 21 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> F =/= 0p ) |
| 22 |
|
eqid |
|- ( deg ` ( CC X. { A } ) ) = ( deg ` ( CC X. { A } ) ) |
| 23 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
| 24 |
22 23
|
dgrmul |
|- ( ( ( ( CC X. { A } ) e. ( Poly ` CC ) /\ ( CC X. { A } ) =/= 0p ) /\ ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( ( deg ` ( CC X. { A } ) ) + ( deg ` F ) ) ) |
| 25 |
10 17 20 21 24
|
syl22anc |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( ( deg ` ( CC X. { A } ) ) + ( deg ` F ) ) ) |
| 26 |
|
0dgr |
|- ( A e. CC -> ( deg ` ( CC X. { A } ) ) = 0 ) |
| 27 |
8 26
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` ( CC X. { A } ) ) = 0 ) |
| 28 |
27
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( ( deg ` ( CC X. { A } ) ) + ( deg ` F ) ) = ( 0 + ( deg ` F ) ) ) |
| 29 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
| 30 |
19 29
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` F ) e. NN0 ) |
| 31 |
30
|
nn0cnd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` F ) e. CC ) |
| 32 |
31
|
addlidd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( 0 + ( deg ` F ) ) = ( deg ` F ) ) |
| 33 |
25 28 32
|
3eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) /\ F =/= 0p ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` F ) ) |
| 34 |
|
cnex |
|- CC e. _V |
| 35 |
34
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> CC e. _V ) |
| 36 |
|
simp1 |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> A e. CC ) |
| 37 |
11
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> 0 e. CC ) |
| 38 |
35 36 37
|
ofc12 |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( ( CC X. { A } ) oF x. ( CC X. { 0 } ) ) = ( CC X. { ( A x. 0 ) } ) ) |
| 39 |
36
|
mul01d |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( A x. 0 ) = 0 ) |
| 40 |
39
|
sneqd |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> { ( A x. 0 ) } = { 0 } ) |
| 41 |
40
|
xpeq2d |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( CC X. { ( A x. 0 ) } ) = ( CC X. { 0 } ) ) |
| 42 |
38 41
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( ( CC X. { A } ) oF x. ( CC X. { 0 } ) ) = ( CC X. { 0 } ) ) |
| 43 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 44 |
43
|
oveq2i |
|- ( ( CC X. { A } ) oF x. 0p ) = ( ( CC X. { A } ) oF x. ( CC X. { 0 } ) ) |
| 45 |
42 44 43
|
3eqtr4g |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( ( CC X. { A } ) oF x. 0p ) = 0p ) |
| 46 |
45
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) = ( deg ` 0p ) ) |
| 47 |
46 4
|
eqtrdi |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { A } ) oF x. 0p ) ) = 0 ) |
| 48 |
6 33 47
|
pm2.61ne |
|- ( ( A e. CC /\ A =/= 0 /\ F e. ( Poly ` S ) ) -> ( deg ` ( ( CC X. { A } ) oF x. F ) ) = ( deg ` F ) ) |