Metamath Proof Explorer


Theorem dgrcolem2

Description: Lemma for dgrco . (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses dgrco.1 M=degF
dgrco.2 N=degG
dgrco.3 φFPolyS
dgrco.4 φGPolyS
dgrco.5 A=coeffF
dgrco.6 φD0
dgrco.7 φM=D+1
dgrco.8 φfPolydegfDdegfG=degf N
Assertion dgrcolem2 φdegFG= M N

Proof

Step Hyp Ref Expression
1 dgrco.1 M=degF
2 dgrco.2 N=degG
3 dgrco.3 φFPolyS
4 dgrco.4 φGPolyS
5 dgrco.5 A=coeffF
6 dgrco.6 φD0
7 dgrco.7 φM=D+1
8 dgrco.8 φfPolydegfDdegfG=degf N
9 plyf GPolySG:
10 4 9 syl φG:
11 10 ffvelcdmda φxGx
12 plyf FPolySF:
13 3 12 syl φF:
14 13 ffvelcdmda φGxFGx
15 11 14 syldan φxFGx
16 5 coef3 FPolySA:0
17 3 16 syl φA:0
18 dgrcl FPolySdegF0
19 3 18 syl φdegF0
20 1 19 eqeltrid φM0
21 17 20 ffvelcdmd φAM
22 21 adantr φxAM
23 20 adantr φxM0
24 11 23 expcld φxGxM
25 22 24 mulcld φxAMGxM
26 15 25 npcand φxFGx-AMGxM+AMGxM=FGx
27 26 mpteq2dva φxFGx-AMGxM+AMGxM=xFGx
28 cnex V
29 28 a1i φV
30 15 25 subcld φxFGxAMGxM
31 eqidd φxFGxAMGxM=xFGxAMGxM
32 eqidd φxAMGxM=xAMGxM
33 29 30 25 31 32 offval2 φxFGxAMGxM+fxAMGxM=xFGx-AMGxM+AMGxM
34 10 feqmptd φG=xGx
35 13 feqmptd φF=yFy
36 fveq2 y=GxFy=FGx
37 11 34 35 36 fmptco φFG=xFGx
38 27 33 37 3eqtr4rd φFG=xFGxAMGxM+fxAMGxM
39 38 fveq2d φdegFG=degxFGxAMGxM+fxAMGxM
40 39 adantr φNdegFG=degxFGxAMGxM+fxAMGxM
41 29 15 25 37 32 offval2 φFGfxAMGxM=xFGxAMGxM
42 plyssc PolySPoly
43 42 3 sselid φFPoly
44 42 4 sselid φGPoly
45 addcl zwz+w
46 45 adantl φzwz+w
47 mulcl zwzw
48 47 adantl φzwzw
49 43 44 46 48 plyco φFGPoly
50 eqidd φyAMyM=yAMyM
51 oveq1 y=GxyM=GxM
52 51 oveq2d y=GxAMyM=AMGxM
53 11 34 50 52 fmptco φyAMyMG=xAMGxM
54 ssidd φ
55 eqid yAMyM=yAMyM
56 55 ply1term AMM0yAMyMPoly
57 54 21 20 56 syl3anc φyAMyMPoly
58 57 44 46 48 plyco φyAMyMGPoly
59 53 58 eqeltrrd φxAMGxMPoly
60 plysubcl FGPolyxAMGxMPolyFGfxAMGxMPoly
61 49 59 60 syl2anc φFGfxAMGxMPoly
62 41 61 eqeltrrd φxFGxAMGxMPoly
63 62 adantr φNxFGxAMGxMPoly
64 59 adantr φNxAMGxMPoly
65 nn0p1nn D0D+1
66 6 65 syl φD+1
67 7 66 eqeltrd φM
68 67 nngt0d φ0<M
69 fveq2 FfyAMyM=0𝑝degFfyAMyM=deg0𝑝
70 dgr0 deg0𝑝=0
71 69 70 eqtrdi FfyAMyM=0𝑝degFfyAMyM=0
72 71 breq1d FfyAMyM=0𝑝degFfyAMyM<M0<M
73 68 72 syl5ibrcom φFfyAMyM=0𝑝degFfyAMyM<M
74 idd φdegFfyAMyM<MdegFfyAMyM<M
75 eqid degyAMyM=degyAMyM
76 1 75 dgrsub FPolyyAMyMPolydegFfyAMyMifMdegyAMyMdegyAMyMM
77 43 57 76 syl2anc φdegFfyAMyMifMdegyAMyMdegyAMyMM
78 67 nnne0d φM0
79 1 5 dgreq0 FPolySF=0𝑝AM=0
80 3 79 syl φF=0𝑝AM=0
81 fveq2 F=0𝑝degF=deg0𝑝
82 81 70 eqtrdi F=0𝑝degF=0
83 1 82 eqtrid F=0𝑝M=0
84 80 83 syl6bir φAM=0M=0
85 84 necon3d φM0AM0
86 78 85 mpd φAM0
87 55 dgr1term AMAM0M0degyAMyM=M
88 21 86 20 87 syl3anc φdegyAMyM=M
89 88 ifeq1d φifMdegyAMyMdegyAMyMM=ifMdegyAMyMMM
90 ifid ifMdegyAMyMMM=M
91 89 90 eqtrdi φifMdegyAMyMdegyAMyMM=M
92 77 91 breqtrd φdegFfyAMyMM
93 eqid coeffyAMyM=coeffyAMyM
94 5 93 coesub FPolyyAMyMPolycoeffFfyAMyM=AfcoeffyAMyM
95 43 57 94 syl2anc φcoeffFfyAMyM=AfcoeffyAMyM
96 95 fveq1d φcoeffFfyAMyMM=AfcoeffyAMyMM
97 17 ffnd φAFn0
98 93 coef3 yAMyMPolycoeffyAMyM:0
99 57 98 syl φcoeffyAMyM:0
100 99 ffnd φcoeffyAMyMFn0
101 nn0ex 0V
102 101 a1i φ0V
103 inidm 00=0
104 eqidd φM0AM=AM
105 55 coe1term AMM0M0coeffyAMyMM=ifM=MAM0
106 21 20 20 105 syl3anc φcoeffyAMyMM=ifM=MAM0
107 eqid M=M
108 107 iftruei ifM=MAM0=AM
109 106 108 eqtrdi φcoeffyAMyMM=AM
110 109 adantr φM0coeffyAMyMM=AM
111 97 100 102 102 103 104 110 ofval φM0AfcoeffyAMyMM=AMAM
112 20 111 mpdan φAfcoeffyAMyMM=AMAM
113 21 subidd φAMAM=0
114 96 112 113 3eqtrd φcoeffFfyAMyMM=0
115 plysubcl FPolyyAMyMPolyFfyAMyMPoly
116 43 57 115 syl2anc φFfyAMyMPoly
117 eqid degFfyAMyM=degFfyAMyM
118 eqid coeffFfyAMyM=coeffFfyAMyM
119 117 118 dgrlt FfyAMyMPolyM0FfyAMyM=0𝑝degFfyAMyM<MdegFfyAMyMMcoeffFfyAMyMM=0
120 116 20 119 syl2anc φFfyAMyM=0𝑝degFfyAMyM<MdegFfyAMyMMcoeffFfyAMyMM=0
121 92 114 120 mpbir2and φFfyAMyM=0𝑝degFfyAMyM<M
122 73 74 121 mpjaod φdegFfyAMyM<M
123 122 adantr φNdegFfyAMyM<M
124 dgrcl FfyAMyMPolydegFfyAMyM0
125 116 124 syl φdegFfyAMyM0
126 125 nn0red φdegFfyAMyM
127 126 adantr φNdegFfyAMyM
128 20 nn0red φM
129 128 adantr φNM
130 nnre NN
131 130 adantl φNN
132 nngt0 N0<N
133 132 adantl φN0<N
134 ltmul1 degFfyAMyMMN0<NdegFfyAMyM<MdegFfyAMyM N< M N
135 127 129 131 133 134 syl112anc φNdegFfyAMyM<MdegFfyAMyM N< M N
136 123 135 mpbid φNdegFfyAMyM N< M N
137 13 ffvelcdmda φyFy
138 21 adantr φyAM
139 id yy
140 expcl yM0yM
141 139 20 140 syl2anr φyyM
142 138 141 mulcld φyAMyM
143 29 137 142 35 50 offval2 φFfyAMyM=yFyAMyM
144 36 52 oveq12d y=GxFyAMyM=FGxAMGxM
145 11 34 143 144 fmptco φFfyAMyMG=xFGxAMGxM
146 145 fveq2d φdegFfyAMyMG=degxFGxAMGxM
147 122 7 breqtrd φdegFfyAMyM<D+1
148 nn0leltp1 degFfyAMyM0D0degFfyAMyMDdegFfyAMyM<D+1
149 125 6 148 syl2anc φdegFfyAMyMDdegFfyAMyM<D+1
150 147 149 mpbird φdegFfyAMyMD
151 fveq2 f=FfyAMyMdegf=degFfyAMyM
152 151 breq1d f=FfyAMyMdegfDdegFfyAMyMD
153 coeq1 f=FfyAMyMfG=FfyAMyMG
154 153 fveq2d f=FfyAMyMdegfG=degFfyAMyMG
155 151 oveq1d f=FfyAMyMdegf N=degFfyAMyM N
156 154 155 eqeq12d f=FfyAMyMdegfG=degf NdegFfyAMyMG=degFfyAMyM N
157 152 156 imbi12d f=FfyAMyMdegfDdegfG=degf NdegFfyAMyMDdegFfyAMyMG=degFfyAMyM N
158 157 8 116 rspcdva φdegFfyAMyMDdegFfyAMyMG=degFfyAMyM N
159 150 158 mpd φdegFfyAMyMG=degFfyAMyM N
160 146 159 eqtr3d φdegxFGxAMGxM=degFfyAMyM N
161 160 adantr φNdegxFGxAMGxM=degFfyAMyM N
162 fconstmpt ×AM=xAM
163 162 a1i φ×AM=xAM
164 eqidd φxGxM=xGxM
165 29 22 24 163 164 offval2 φ×AM×fxGxM=xAMGxM
166 165 fveq2d φdeg×AM×fxGxM=degxAMGxM
167 eqidd φyyM=yyM
168 11 34 167 51 fmptco φyyMG=xGxM
169 1cnd φ1
170 plypow 1M0yyMPoly
171 54 169 20 170 syl3anc φyyMPoly
172 171 44 46 48 plyco φyyMGPoly
173 168 172 eqeltrrd φxGxMPoly
174 dgrmulc AMAM0xGxMPolydeg×AM×fxGxM=degxGxM
175 21 86 173 174 syl3anc φdeg×AM×fxGxM=degxGxM
176 166 175 eqtr3d φdegxAMGxM=degxGxM
177 176 adantr φNdegxAMGxM=degxGxM
178 67 adantr φNM
179 simpr φNN
180 4 adantr φNGPolyS
181 2 178 179 180 dgrcolem1 φNdegxGxM= M N
182 177 181 eqtrd φNdegxAMGxM= M N
183 136 161 182 3brtr4d φNdegxFGxAMGxM<degxAMGxM
184 eqid degxFGxAMGxM=degxFGxAMGxM
185 eqid degxAMGxM=degxAMGxM
186 184 185 dgradd2 xFGxAMGxMPolyxAMGxMPolydegxFGxAMGxM<degxAMGxMdegxFGxAMGxM+fxAMGxM=degxAMGxM
187 63 64 183 186 syl3anc φNdegxFGxAMGxM+fxAMGxM=degxAMGxM
188 40 187 182 3eqtrd φNdegFG= M N
189 0cn 0
190 ffvelcdm G:0G0
191 10 189 190 sylancl φG0
192 13 191 ffvelcdmd φFG0
193 0dgr FG0deg×FG0=0
194 192 193 syl φdeg×FG0=0
195 20 nn0cnd φM
196 195 mul01d φ M0=0
197 194 196 eqtr4d φdeg×FG0= M0
198 197 adantr φN=0deg×FG0= M0
199 191 ad2antrr φN=0xG0
200 simpr φN=0N=0
201 2 200 eqtr3id φN=0degG=0
202 0dgrb GPolySdegG=0G=×G0
203 4 202 syl φdegG=0G=×G0
204 203 adantr φN=0degG=0G=×G0
205 201 204 mpbid φN=0G=×G0
206 fconstmpt ×G0=xG0
207 205 206 eqtrdi φN=0G=xG0
208 35 adantr φN=0F=yFy
209 fveq2 y=G0Fy=FG0
210 199 207 208 209 fmptco φN=0FG=xFG0
211 fconstmpt ×FG0=xFG0
212 210 211 eqtr4di φN=0FG=×FG0
213 212 fveq2d φN=0degFG=deg×FG0
214 200 oveq2d φN=0 M N= M0
215 198 213 214 3eqtr4d φN=0degFG= M N
216 dgrcl GPolySdegG0
217 4 216 syl φdegG0
218 2 217 eqeltrid φN0
219 elnn0 N0NN=0
220 218 219 sylib φNN=0
221 188 215 220 mpjaodan φdegFG= M N