| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrco.1 |
⊢ 𝑀 = ( deg ‘ 𝐹 ) |
| 2 |
|
dgrco.2 |
⊢ 𝑁 = ( deg ‘ 𝐺 ) |
| 3 |
|
dgrco.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 4 |
|
dgrco.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 5 |
|
dgrco.5 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 6 |
|
dgrco.6 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 7 |
|
dgrco.7 |
⊢ ( 𝜑 → 𝑀 = ( 𝐷 + 1 ) ) |
| 8 |
|
dgrco.8 |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝐷 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
| 9 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐺 : ℂ ⟶ ℂ ) |
| 11 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 12 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 15 |
11 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 16 |
5
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 18 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 20 |
1 19
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 21 |
17 20
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
| 23 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑀 ∈ ℕ0 ) |
| 24 |
11 23
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ∈ ℂ ) |
| 25 |
22 24
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ∈ ℂ ) |
| 26 |
15 25
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) + ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) + ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 28 |
|
cnex |
⊢ ℂ ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 30 |
15 25
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ∈ ℂ ) |
| 31 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 32 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 33 |
29 30 25 31 32
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∘f + ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) + ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 34 |
10
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 35 |
13
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 37 |
11 34 35 36
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 |
27 33 37
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∘f + ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∘f + ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∘f + ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) ) |
| 41 |
29 15 25 37 32
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ∘f − ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 42 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
| 43 |
42 3
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
| 44 |
42 4
|
sselid |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
| 45 |
|
addcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 + 𝑤 ) ∈ ℂ ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 + 𝑤 ) ∈ ℂ ) |
| 47 |
|
mulcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 · 𝑤 ) ∈ ℂ ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 · 𝑤 ) ∈ ℂ ) |
| 49 |
43 44 46 48
|
plyco |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
| 50 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( 𝑦 ↑ 𝑀 ) = ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) = ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) |
| 53 |
11 34 50 52
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∘ 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 54 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 55 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) |
| 56 |
55
|
ply1term |
⊢ ( ( ℂ ⊆ ℂ ∧ ( 𝐴 ‘ 𝑀 ) ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 57 |
54 21 20 56
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 58 |
57 44 46 48
|
plyco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∘ 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
| 59 |
53 58
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 60 |
|
plysubcl |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) → ( ( 𝐹 ∘ 𝐺 ) ∘f − ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 61 |
49 59 60
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ∘f − ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 62 |
41 61
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 64 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 65 |
|
nn0p1nn |
⊢ ( 𝐷 ∈ ℕ0 → ( 𝐷 + 1 ) ∈ ℕ ) |
| 66 |
6 65
|
syl |
⊢ ( 𝜑 → ( 𝐷 + 1 ) ∈ ℕ ) |
| 67 |
7 66
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 68 |
67
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 69 |
|
fveq2 |
⊢ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) = ( deg ‘ 0𝑝 ) ) |
| 70 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
| 71 |
69 70
|
eqtrdi |
⊢ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) = 0 ) |
| 72 |
71
|
breq1d |
⊢ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ↔ 0 < 𝑀 ) ) |
| 73 |
68 72
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) ) |
| 74 |
|
idd |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) ) |
| 75 |
|
eqid |
⊢ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) |
| 76 |
1 75
|
dgrsub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ if ( 𝑀 ≤ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , 𝑀 ) ) |
| 77 |
43 57 76
|
syl2anc |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ if ( 𝑀 ≤ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , 𝑀 ) ) |
| 78 |
67
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 79 |
1 5
|
dgreq0 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑀 ) = 0 ) ) |
| 80 |
3 79
|
syl |
⊢ ( 𝜑 → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑀 ) = 0 ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = ( deg ‘ 0𝑝 ) ) |
| 82 |
81 70
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = 0 ) |
| 83 |
1 82
|
eqtrid |
⊢ ( 𝐹 = 0𝑝 → 𝑀 = 0 ) |
| 84 |
80 83
|
biimtrrdi |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) = 0 → 𝑀 = 0 ) ) |
| 85 |
84
|
necon3d |
⊢ ( 𝜑 → ( 𝑀 ≠ 0 → ( 𝐴 ‘ 𝑀 ) ≠ 0 ) ) |
| 86 |
78 85
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ≠ 0 ) |
| 87 |
55
|
dgr1term |
⊢ ( ( ( 𝐴 ‘ 𝑀 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ∧ 𝑀 ∈ ℕ0 ) → ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 𝑀 ) |
| 88 |
21 86 20 87
|
syl3anc |
⊢ ( 𝜑 → ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 𝑀 ) |
| 89 |
88
|
ifeq1d |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , 𝑀 ) = if ( 𝑀 ≤ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , 𝑀 , 𝑀 ) ) |
| 90 |
|
ifid |
⊢ if ( 𝑀 ≤ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , 𝑀 , 𝑀 ) = 𝑀 |
| 91 |
89 90
|
eqtrdi |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , ( deg ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) , 𝑀 ) = 𝑀 ) |
| 92 |
77 91
|
breqtrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝑀 ) |
| 93 |
|
eqid |
⊢ ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) |
| 94 |
5 93
|
coesub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) → ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) = ( 𝐴 ∘f − ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ) |
| 95 |
43 57 94
|
syl2anc |
⊢ ( 𝜑 → ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) = ( 𝐴 ∘f − ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ) |
| 96 |
95
|
fveq1d |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) = ( ( 𝐴 ∘f − ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) ) |
| 97 |
17
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
| 98 |
93
|
coef3 |
⊢ ( ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) → ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 99 |
57 98
|
syl |
⊢ ( 𝜑 → ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 100 |
99
|
ffnd |
⊢ ( 𝜑 → ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) Fn ℕ0 ) |
| 101 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 103 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
| 104 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑀 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 105 |
55
|
coe1term |
⊢ ( ( ( 𝐴 ‘ 𝑀 ) ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 ) = if ( 𝑀 = 𝑀 , ( 𝐴 ‘ 𝑀 ) , 0 ) ) |
| 106 |
21 20 20 105
|
syl3anc |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 ) = if ( 𝑀 = 𝑀 , ( 𝐴 ‘ 𝑀 ) , 0 ) ) |
| 107 |
|
eqid |
⊢ 𝑀 = 𝑀 |
| 108 |
107
|
iftruei |
⊢ if ( 𝑀 = 𝑀 , ( 𝐴 ‘ 𝑀 ) , 0 ) = ( 𝐴 ‘ 𝑀 ) |
| 109 |
106 108
|
eqtrdi |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ0 ) → ( ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 111 |
97 100 102 102 103 104 110
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ∘f − ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) = ( ( 𝐴 ‘ 𝑀 ) − ( 𝐴 ‘ 𝑀 ) ) ) |
| 112 |
20 111
|
mpdan |
⊢ ( 𝜑 → ( ( 𝐴 ∘f − ( coeff ‘ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) = ( ( 𝐴 ‘ 𝑀 ) − ( 𝐴 ‘ 𝑀 ) ) ) |
| 113 |
21
|
subidd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) − ( 𝐴 ‘ 𝑀 ) ) = 0 ) |
| 114 |
96 112 113
|
3eqtrd |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) = 0 ) |
| 115 |
|
plysubcl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 116 |
43 57 115
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 117 |
|
eqid |
⊢ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) = ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) |
| 118 |
|
eqid |
⊢ ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) = ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) |
| 119 |
117 118
|
dgrlt |
⊢ ( ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝑀 ∧ ( ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) = 0 ) ) ) |
| 120 |
116 20 119
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝑀 ∧ ( ( coeff ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) = 0 ) ) ) |
| 121 |
92 114 120
|
mpbir2and |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) ) |
| 122 |
73 74 121
|
mpjaod |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ) |
| 124 |
|
dgrcl |
⊢ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ∈ ℕ0 ) |
| 125 |
116 124
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ∈ ℕ0 ) |
| 126 |
125
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ∈ ℝ ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ∈ ℝ ) |
| 128 |
20
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 130 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 131 |
130
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 132 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 0 < 𝑁 ) |
| 134 |
|
ltmul1 |
⊢ ( ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) < ( 𝑀 · 𝑁 ) ) ) |
| 135 |
127 129 131 133 134
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < 𝑀 ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) < ( 𝑀 · 𝑁 ) ) ) |
| 136 |
123 135
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) < ( 𝑀 · 𝑁 ) ) |
| 137 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 138 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
| 139 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
| 140 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑀 ) ∈ ℂ ) |
| 141 |
139 20 140
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑀 ) ∈ ℂ ) |
| 142 |
138 141
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ∈ ℂ ) |
| 143 |
29 137 142 35 50
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 𝐹 ‘ 𝑦 ) − ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) |
| 144 |
36 52
|
oveq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) − ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 145 |
11 34 143 144
|
fmptco |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 146 |
145
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) ) |
| 147 |
122 7
|
breqtrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < ( 𝐷 + 1 ) ) |
| 148 |
|
nn0leltp1 |
⊢ ( ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝐷 ↔ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < ( 𝐷 + 1 ) ) ) |
| 149 |
125 6 148
|
syl2anc |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝐷 ↔ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) < ( 𝐷 + 1 ) ) ) |
| 150 |
147 149
|
mpbird |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝐷 ) |
| 151 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( deg ‘ 𝑓 ) = ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ) |
| 152 |
151
|
breq1d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( ( deg ‘ 𝑓 ) ≤ 𝐷 ↔ ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝐷 ) ) |
| 153 |
|
coeq1 |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( 𝑓 ∘ 𝐺 ) = ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) |
| 154 |
153
|
fveq2d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( deg ‘ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) ) |
| 155 |
151
|
oveq1d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( ( deg ‘ 𝑓 ) · 𝑁 ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) |
| 156 |
154 155
|
eqeq12d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ↔ ( deg ‘ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) ) |
| 157 |
152 156
|
imbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) → ( ( ( deg ‘ 𝑓 ) ≤ 𝐷 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝐷 → ( deg ‘ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) ) ) |
| 158 |
157 8 116
|
rspcdva |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) ≤ 𝐷 → ( deg ‘ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) ) |
| 159 |
150 158
|
mpd |
⊢ ( 𝜑 → ( deg ‘ ( ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ∘ 𝐺 ) ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) |
| 160 |
146 159
|
eqtr3d |
⊢ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( 𝑦 ↑ 𝑀 ) ) ) ) ) · 𝑁 ) ) |
| 162 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝐴 ‘ 𝑀 ) } ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 ‘ 𝑀 ) ) |
| 163 |
162
|
a1i |
⊢ ( 𝜑 → ( ℂ × { ( 𝐴 ‘ 𝑀 ) } ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 ‘ 𝑀 ) ) ) |
| 164 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) |
| 165 |
29 22 24 163 164
|
offval2 |
⊢ ( 𝜑 → ( ( ℂ × { ( 𝐴 ‘ 𝑀 ) } ) ∘f · ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 166 |
165
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( ( ℂ × { ( 𝐴 ‘ 𝑀 ) } ) ∘f · ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 167 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑀 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑀 ) ) ) |
| 168 |
11 34 167 51
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑀 ) ) ∘ 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) |
| 169 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 170 |
|
plypow |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑀 ) ) ∈ ( Poly ‘ ℂ ) ) |
| 171 |
54 169 20 170
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑀 ) ) ∈ ( Poly ‘ ℂ ) ) |
| 172 |
171 44 46 48
|
plyco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑀 ) ) ∘ 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
| 173 |
168 172
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ∈ ( Poly ‘ ℂ ) ) |
| 174 |
|
dgrmulc |
⊢ ( ( ( 𝐴 ‘ 𝑀 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ∧ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ∈ ( Poly ‘ ℂ ) ) → ( deg ‘ ( ( ℂ × { ( 𝐴 ‘ 𝑀 ) } ) ∘f · ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 175 |
21 86 173 174
|
syl3anc |
⊢ ( 𝜑 → ( deg ‘ ( ( ℂ × { ( 𝐴 ‘ 𝑀 ) } ) ∘f · ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 176 |
166 175
|
eqtr3d |
⊢ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 177 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 178 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 179 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 180 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 181 |
2 178 179 180
|
dgrcolem1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑀 · 𝑁 ) ) |
| 182 |
177 181
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( 𝑀 · 𝑁 ) ) |
| 183 |
136 161 182
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) < ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 184 |
|
eqid |
⊢ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 185 |
|
eqid |
⊢ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
| 186 |
184 185
|
dgradd2 |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) < ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) → ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∘f + ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 187 |
63 64 183 186
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) − ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ∘f + ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑀 ) · ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) |
| 188 |
40 187 182
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) |
| 189 |
|
0cn |
⊢ 0 ∈ ℂ |
| 190 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ℂ ⟶ ℂ ∧ 0 ∈ ℂ ) → ( 𝐺 ‘ 0 ) ∈ ℂ ) |
| 191 |
10 189 190
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) ∈ ℂ ) |
| 192 |
13 191
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ∈ ℂ ) |
| 193 |
|
0dgr |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ∈ ℂ → ( deg ‘ ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) = 0 ) |
| 194 |
192 193
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) = 0 ) |
| 195 |
20
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 196 |
195
|
mul01d |
⊢ ( 𝜑 → ( 𝑀 · 0 ) = 0 ) |
| 197 |
194 196
|
eqtr4d |
⊢ ( 𝜑 → ( deg ‘ ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) = ( 𝑀 · 0 ) ) |
| 198 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( deg ‘ ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) = ( 𝑀 · 0 ) ) |
| 199 |
191
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐺 ‘ 0 ) ∈ ℂ ) |
| 200 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 201 |
2 200
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( deg ‘ 𝐺 ) = 0 ) |
| 202 |
|
0dgrb |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( ( deg ‘ 𝐺 ) = 0 ↔ 𝐺 = ( ℂ × { ( 𝐺 ‘ 0 ) } ) ) ) |
| 203 |
4 202
|
syl |
⊢ ( 𝜑 → ( ( deg ‘ 𝐺 ) = 0 ↔ 𝐺 = ( ℂ × { ( 𝐺 ‘ 0 ) } ) ) ) |
| 204 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( ( deg ‘ 𝐺 ) = 0 ↔ 𝐺 = ( ℂ × { ( 𝐺 ‘ 0 ) } ) ) ) |
| 205 |
201 204
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐺 = ( ℂ × { ( 𝐺 ‘ 0 ) } ) ) |
| 206 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝐺 ‘ 0 ) } ) = ( 𝑥 ∈ ℂ ↦ ( 𝐺 ‘ 0 ) ) |
| 207 |
205 206
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝐺 ‘ 0 ) ) ) |
| 208 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 209 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 0 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) |
| 210 |
199 207 208 209
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝐹 ∘ 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) ) |
| 211 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) = ( 𝑥 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) |
| 212 |
210 211
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝐹 ∘ 𝐺 ) = ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) |
| 213 |
212
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( deg ‘ ( ℂ × { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) ) |
| 214 |
200
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) ) |
| 215 |
198 213 214
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) |
| 216 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
| 217 |
4 216
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
| 218 |
2 217
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 219 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 220 |
218 219
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 221 |
188 215 220
|
mpjaodan |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) |