Description: The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coe1term.1 | ⊢ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 𝑁 ) ) ) | |
| Assertion | dgr1term | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0 ) → ( deg ‘ 𝐹 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1term.1 | ⊢ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 𝑁 ) ) ) | |
| 2 | 1 | coe1termlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ∧ ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) ) ) |
| 3 | 2 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) ) |
| 4 | 3 | 3impia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≠ 0 ) → ( deg ‘ 𝐹 ) = 𝑁 ) |
| 5 | 4 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0 ) → ( deg ‘ 𝐹 ) = 𝑁 ) |