Step |
Hyp |
Ref |
Expression |
1 |
|
coe1term.1 |
⊢ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 𝑁 ) ) ) |
2 |
|
ssid |
⊢ ℂ ⊆ ℂ |
3 |
1
|
ply1term |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
4 |
2 3
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
6 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
7 |
|
0cn |
⊢ 0 ∈ ℂ |
8 |
|
ifcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
9 |
6 7 8
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
11 |
10
|
fmpttd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) : ℕ0 ⟶ ℂ ) |
12 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) |
13 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 = 𝑁 ↔ 𝑘 = 𝑁 ) ) |
14 |
13
|
ifbid |
⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 𝑁 , 𝐴 , 0 ) = if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
16 |
|
ifcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
17 |
6 7 16
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
19 |
12 14 15 18
|
fvmptd3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ) |
20 |
19
|
neeq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) ≠ 0 ↔ if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ≠ 0 ) ) |
21 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
22 |
21
|
leidd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁 ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ≤ 𝑁 ) |
24 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑁 → if ( 𝑘 = 𝑁 , 𝐴 , 0 ) = 0 ) |
25 |
24
|
necon1ai |
⊢ ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ≠ 0 → 𝑘 = 𝑁 ) |
26 |
25
|
breq1d |
⊢ ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ≠ 0 → ( 𝑘 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁 ) ) |
27 |
23 26
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
28 |
20 27
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
30 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) : ℕ0 ⟶ ℂ ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
31 |
5 11 30
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
32 |
29 31
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
33 |
1
|
ply1termlem |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
34 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
35 |
19
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
36 |
34 35
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
37 |
36
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
38 |
37
|
mpteq2dv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( if ( 𝑘 = 𝑁 , 𝐴 , 0 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
39 |
33 38
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
40 |
4 5 11 32 39
|
coeeq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( coeff ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ) |
41 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
42 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝑁 ∈ ℕ0 ) |
43 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) : ℕ0 ⟶ ℂ ) |
44 |
32
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
45 |
39
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
46 |
|
iftrue |
⊢ ( 𝑛 = 𝑁 → if ( 𝑛 = 𝑁 , 𝐴 , 0 ) = 𝐴 ) |
47 |
46 12
|
fvmptg |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑁 ) = 𝐴 ) |
48 |
47
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑁 ) = 𝐴 ) |
49 |
48
|
neeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑁 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
50 |
49
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑁 ) ≠ 0 ) |
51 |
41 42 43 44 45 50
|
dgreq |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( deg ‘ 𝐹 ) = 𝑁 ) |
52 |
51
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) ) |
53 |
40 52
|
jca |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ∧ ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) ) ) |