| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1term.1 |
|
| 2 |
|
ssid |
|
| 3 |
1
|
ply1term |
|
| 4 |
2 3
|
mp3an1 |
|
| 5 |
|
simpr |
|
| 6 |
|
simpl |
|
| 7 |
|
0cn |
|
| 8 |
|
ifcl |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
fmpttd |
|
| 12 |
|
eqid |
|
| 13 |
|
eqeq1 |
|
| 14 |
13
|
ifbid |
|
| 15 |
|
simpr |
|
| 16 |
|
ifcl |
|
| 17 |
6 7 16
|
sylancl |
|
| 18 |
17
|
adantr |
|
| 19 |
12 14 15 18
|
fvmptd3 |
|
| 20 |
19
|
neeq1d |
|
| 21 |
|
nn0re |
|
| 22 |
21
|
leidd |
|
| 23 |
22
|
ad2antlr |
|
| 24 |
|
iffalse |
|
| 25 |
24
|
necon1ai |
|
| 26 |
25
|
breq1d |
|
| 27 |
23 26
|
syl5ibrcom |
|
| 28 |
20 27
|
sylbid |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
|
plyco0 |
|
| 31 |
5 11 30
|
syl2anc |
|
| 32 |
29 31
|
mpbird |
|
| 33 |
1
|
ply1termlem |
|
| 34 |
|
elfznn0 |
|
| 35 |
19
|
oveq1d |
|
| 36 |
34 35
|
sylan2 |
|
| 37 |
36
|
sumeq2dv |
|
| 38 |
37
|
mpteq2dv |
|
| 39 |
33 38
|
eqtr4d |
|
| 40 |
4 5 11 32 39
|
coeeq |
|
| 41 |
4
|
adantr |
|
| 42 |
5
|
adantr |
|
| 43 |
11
|
adantr |
|
| 44 |
32
|
adantr |
|
| 45 |
39
|
adantr |
|
| 46 |
|
iftrue |
|
| 47 |
46 12
|
fvmptg |
|
| 48 |
47
|
ancoms |
|
| 49 |
48
|
neeq1d |
|
| 50 |
49
|
biimpar |
|
| 51 |
41 42 43 44 45 50
|
dgreq |
|
| 52 |
51
|
ex |
|
| 53 |
40 52
|
jca |
|