| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyco.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 2 |
|
plyco.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 3 |
|
plyco.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 4 |
|
plyco.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
| 5 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐺 : ℂ ⟶ ℂ ) |
| 7 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 8 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ℂ ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 9 |
|
eqid |
⊢ ( coeff ‘ 𝐹 ) = ( coeff ‘ 𝐹 ) |
| 10 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
| 11 |
9 10
|
coeid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑧 ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑧 ) → ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
| 15 |
14
|
sumeq2sdv |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑧 ) → Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
| 16 |
7 8 12 15
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 17 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 18 |
1 17
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 0 ... 𝑥 ) = ( 0 ... 0 ) ) |
| 20 |
19
|
sumeq1d |
⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
| 21 |
20
|
mpteq2dv |
⊢ ( 𝑥 = 0 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = 𝑑 → ( 0 ... 𝑥 ) = ( 0 ... 𝑑 ) ) |
| 25 |
24
|
sumeq1d |
⊢ ( 𝑥 = 𝑑 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑥 = 𝑑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( 0 ... 𝑥 ) = ( 0 ... ( 𝑑 + 1 ) ) ) |
| 30 |
29
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
| 31 |
30
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 32 |
31
|
eleq1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 33 |
32
|
imbi2d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( 0 ... 𝑥 ) = ( 0 ... ( deg ‘ 𝐹 ) ) ) |
| 35 |
34
|
sumeq1d |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
| 36 |
35
|
mpteq2dv |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 38 |
37
|
imbi2d |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 39 |
|
0z |
⊢ 0 ∈ ℤ |
| 40 |
7
|
exp0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) = 1 ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · 1 ) ) |
| 42 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 43 |
1 42
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 44 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 45 |
44
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
| 46 |
43 45
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 47 |
9
|
coef |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 48 |
1 47
|
syl |
⊢ ( 𝜑 → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 49 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 50 |
|
ffvelcdm |
⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ 0 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 0 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
| 51 |
48 49 50
|
sylancl |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐹 ) ‘ 0 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
| 52 |
46 51
|
sseldd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐹 ) ‘ 0 ) ∈ ℂ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( coeff ‘ 𝐹 ) ‘ 0 ) ∈ ℂ ) |
| 54 |
53
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · 1 ) = ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) |
| 55 |
41 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) = ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) |
| 56 |
55 53
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ∈ ℂ ) |
| 57 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) = ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) |
| 58 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) = ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) |
| 59 |
57 58
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ) |
| 60 |
59
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ) |
| 61 |
39 56 60
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ) |
| 62 |
61 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) |
| 63 |
62
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) ) |
| 64 |
|
fconstmpt |
⊢ ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } ) = ( 𝑧 ∈ ℂ ↦ ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) |
| 65 |
63 64
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } ) ) |
| 66 |
|
plyconst |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ( ( coeff ‘ 𝐹 ) ‘ 0 ) ∈ ( 𝑆 ∪ { 0 } ) ) → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 67 |
46 51 66
|
syl2anc |
⊢ ( 𝜑 → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 68 |
|
plyun0 |
⊢ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) = ( Poly ‘ 𝑆 ) |
| 69 |
67 68
|
eleqtrdi |
⊢ ( 𝜑 → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } ) ∈ ( Poly ‘ 𝑆 ) ) |
| 70 |
65 69
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 71 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 72 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 73 |
|
peano2nn0 |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑑 + 1 ) ∈ ℕ0 ) |
| 74 |
|
ffvelcdm |
⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ ( 𝑑 + 1 ) ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
| 75 |
48 73 74
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
| 76 |
|
plyconst |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 77 |
72 75 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 78 |
77 68
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∈ ( Poly ‘ 𝑆 ) ) |
| 79 |
|
nn0p1nn |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑑 + 1 ) ∈ ℕ ) |
| 80 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) = ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) |
| 81 |
80
|
mpteq2dv |
⊢ ( 𝑥 = 1 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) ) |
| 82 |
81
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 83 |
82
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 84 |
|
oveq2 |
⊢ ( 𝑥 = 𝑑 → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) = ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) |
| 85 |
84
|
mpteq2dv |
⊢ ( 𝑥 = 𝑑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ) |
| 86 |
85
|
eleq1d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 87 |
86
|
imbi2d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 88 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) = ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) |
| 89 |
88
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) |
| 90 |
89
|
eleq1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 91 |
90
|
imbi2d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) ) ∈ ( Poly ‘ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 92 |
7
|
exp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 93 |
92
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 94 |
93 8
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) = 𝐺 ) |
| 95 |
94 2
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 96 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 97 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 98 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 99 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
| 100 |
96 97 98 99
|
plymul |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |
| 101 |
100
|
expr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 102 |
|
cnex |
⊢ ℂ ∈ V |
| 103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ℂ ∈ V ) |
| 104 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ∈ V ) |
| 105 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 106 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ) |
| 107 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 108 |
103 104 105 106 107
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) = ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 109 |
|
nnnn0 |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℕ0 ) |
| 110 |
109
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑧 ∈ ℂ ) → 𝑑 ∈ ℕ0 ) |
| 111 |
105 110
|
expp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) = ( ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
| 112 |
111
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 113 |
108 112
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) |
| 114 |
113
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 115 |
101 114
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 116 |
115
|
expcom |
⊢ ( 𝑑 ∈ ℕ → ( 𝜑 → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 117 |
116
|
a2d |
⊢ ( 𝑑 ∈ ℕ → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ 𝑆 ) ) → ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 118 |
83 87 91 91 95 117
|
nnind |
⊢ ( ( 𝑑 + 1 ) ∈ ℕ → ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 119 |
79 118
|
syl |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 120 |
119
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 121 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 122 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
| 123 |
78 120 121 122
|
plymul |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 124 |
123
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) → ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 125 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 126 |
71 124 125
|
plyadd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∘f + ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 127 |
126
|
expr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∘f + ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 128 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ℂ ∈ V ) |
| 129 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ∈ V |
| 130 |
129
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ∈ V ) |
| 131 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) · ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ∈ V ) |
| 132 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 133 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ∈ V ) |
| 134 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ∈ V ) |
| 135 |
|
fconstmpt |
⊢ ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) = ( 𝑧 ∈ ℂ ↦ ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ) |
| 136 |
135
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) = ( 𝑧 ∈ ℂ ↦ ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ) ) |
| 137 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) |
| 138 |
128 133 134 136 137
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) · ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) |
| 139 |
128 130 131 132 138
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∘f + ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) + ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) · ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) ) |
| 140 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → 𝑑 ∈ ℕ0 ) |
| 141 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 142 |
140 141
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → 𝑑 ∈ ( ℤ≥ ‘ 0 ) ) |
| 143 |
9
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ) |
| 144 |
1 143
|
syl |
⊢ ( 𝜑 → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ) |
| 145 |
144
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ) |
| 146 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 147 |
|
ffvelcdm |
⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 148 |
145 146 147
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 149 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 150 |
|
expcl |
⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ∈ ℂ ) |
| 151 |
149 146 150
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ∈ ℂ ) |
| 152 |
148 151
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ) → ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 153 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑑 + 1 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) = ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) ) |
| 154 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑑 + 1 ) → ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) = ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) |
| 155 |
153 154
|
oveq12d |
⊢ ( 𝑘 = ( 𝑑 + 1 ) → ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) · ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) |
| 156 |
142 152 155
|
fsump1 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) + ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) · ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) |
| 157 |
156
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) + ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) · ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) ) |
| 158 |
139 157
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∘f + ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
| 159 |
158
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∘f + ( ( ℂ × { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑 + 1 ) ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑 + 1 ) ) ) ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 160 |
127 159
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 161 |
160
|
expcom |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 162 |
161
|
a2d |
⊢ ( 𝑑 ∈ ℕ0 → ( ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) → ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑑 + 1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) ) |
| 163 |
23 28 33 38 70 162
|
nn0ind |
⊢ ( ( deg ‘ 𝐹 ) ∈ ℕ0 → ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) ) |
| 164 |
18 163
|
mpcom |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 165 |
16 164
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |