Metamath Proof Explorer


Theorem 0dgr

Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion 0dgr ( 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { 𝐴 } ) ) = 0 )

Proof

Step Hyp Ref Expression
1 ssid ℂ ⊆ ℂ
2 plyconst ( ( ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) )
3 1 2 mpan ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) )
4 0nn0 0 ∈ ℕ0
5 4 a1i ( 𝐴 ∈ ℂ → 0 ∈ ℕ0 )
6 simpl ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → 𝐴 ∈ ℂ )
7 0z 0 ∈ ℤ
8 exp0 ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 0 ) = 1 )
9 8 oveq2d ( 𝑧 ∈ ℂ → ( 𝐴 · ( 𝑧 ↑ 0 ) ) = ( 𝐴 · 1 ) )
10 mulid1 ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 )
11 9 10 sylan9eqr ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝐴 · ( 𝑧 ↑ 0 ) ) = 𝐴 )
12 simpl ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝐴 ∈ ℂ )
13 11 12 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝐴 · ( 𝑧 ↑ 0 ) ) ∈ ℂ )
14 oveq2 ( 𝑘 = 0 → ( 𝑧𝑘 ) = ( 𝑧 ↑ 0 ) )
15 14 oveq2d ( 𝑘 = 0 → ( 𝐴 · ( 𝑧𝑘 ) ) = ( 𝐴 · ( 𝑧 ↑ 0 ) ) )
16 15 fsum1 ( ( 0 ∈ ℤ ∧ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝐴 · ( 𝑧𝑘 ) ) = ( 𝐴 · ( 𝑧 ↑ 0 ) ) )
17 7 13 16 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝐴 · ( 𝑧𝑘 ) ) = ( 𝐴 · ( 𝑧 ↑ 0 ) ) )
18 17 11 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝐴 · ( 𝑧𝑘 ) ) = 𝐴 )
19 18 mpteq2dva ( 𝐴 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝐴 · ( 𝑧𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ 𝐴 ) )
20 fconstmpt ( ℂ × { 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ 𝐴 )
21 19 20 syl6reqr ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝐴 · ( 𝑧𝑘 ) ) ) )
22 3 5 6 21 dgrle ( 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { 𝐴 } ) ) ≤ 0 )
23 dgrcl ( ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( ℂ × { 𝐴 } ) ) ∈ ℕ0 )
24 nn0le0eq0 ( ( deg ‘ ( ℂ × { 𝐴 } ) ) ∈ ℕ0 → ( ( deg ‘ ( ℂ × { 𝐴 } ) ) ≤ 0 ↔ ( deg ‘ ( ℂ × { 𝐴 } ) ) = 0 ) )
25 3 23 24 3syl ( 𝐴 ∈ ℂ → ( ( deg ‘ ( ℂ × { 𝐴 } ) ) ≤ 0 ↔ ( deg ‘ ( ℂ × { 𝐴 } ) ) = 0 ) )
26 22 25 mpbid ( 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { 𝐴 } ) ) = 0 )