| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgradd.1 |
|
| 2 |
|
dgradd.2 |
|
| 3 |
|
plyaddcl |
|
| 4 |
3
|
3adant3 |
|
| 5 |
|
dgrcl |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
nn0red |
|
| 8 |
|
dgrcl |
|
| 9 |
2 8
|
eqeltrid |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
10
|
nn0red |
|
| 12 |
|
dgrcl |
|
| 13 |
1 12
|
eqeltrid |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
14
|
nn0red |
|
| 16 |
11 15
|
ifcld |
|
| 17 |
1 2
|
dgradd |
|
| 18 |
17
|
3adant3 |
|
| 19 |
11
|
leidd |
|
| 20 |
|
simp3 |
|
| 21 |
15 11 20
|
ltled |
|
| 22 |
|
breq1 |
|
| 23 |
|
breq1 |
|
| 24 |
22 23
|
ifboth |
|
| 25 |
19 21 24
|
syl2anc |
|
| 26 |
7 16 11 18 25
|
letrd |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
27 28
|
coeadd |
|
| 30 |
29
|
3adant3 |
|
| 31 |
30
|
fveq1d |
|
| 32 |
27
|
coef3 |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
33
|
ffnd |
|
| 35 |
28
|
coef3 |
|
| 36 |
35
|
3ad2ant2 |
|
| 37 |
36
|
ffnd |
|
| 38 |
|
nn0ex |
|
| 39 |
38
|
a1i |
|
| 40 |
|
inidm |
|
| 41 |
15 11
|
ltnled |
|
| 42 |
20 41
|
mpbid |
|
| 43 |
|
simp1 |
|
| 44 |
27 1
|
dgrub |
|
| 45 |
44
|
3expia |
|
| 46 |
43 10 45
|
syl2anc |
|
| 47 |
46
|
necon1bd |
|
| 48 |
42 47
|
mpd |
|
| 49 |
48
|
adantr |
|
| 50 |
|
eqidd |
|
| 51 |
34 37 39 39 40 49 50
|
ofval |
|
| 52 |
10 51
|
mpdan |
|
| 53 |
36 10
|
ffvelcdmd |
|
| 54 |
53
|
addlidd |
|
| 55 |
31 52 54
|
3eqtrd |
|
| 56 |
|
simp2 |
|
| 57 |
|
0red |
|
| 58 |
14
|
nn0ge0d |
|
| 59 |
57 15 11 58 20
|
lelttrd |
|
| 60 |
59
|
gt0ne0d |
|
| 61 |
2 28
|
dgreq0 |
|
| 62 |
|
fveq2 |
|
| 63 |
|
dgr0 |
|
| 64 |
63
|
eqcomi |
|
| 65 |
62 2 64
|
3eqtr4g |
|
| 66 |
61 65
|
biimtrrdi |
|
| 67 |
66
|
necon3d |
|
| 68 |
56 60 67
|
sylc |
|
| 69 |
55 68
|
eqnetrd |
|
| 70 |
|
eqid |
|
| 71 |
|
eqid |
|
| 72 |
70 71
|
dgrub |
|
| 73 |
4 10 69 72
|
syl3anc |
|
| 74 |
7 11
|
letri3d |
|
| 75 |
26 73 74
|
mpbir2and |
|