| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgradd.1 |  |-  M = ( deg ` F ) | 
						
							| 2 |  | dgradd.2 |  |-  N = ( deg ` G ) | 
						
							| 3 |  | plyaddcl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF + G ) e. ( Poly ` CC ) ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( F oF + G ) e. ( Poly ` CC ) ) | 
						
							| 5 |  | dgrcl |  |-  ( ( F oF + G ) e. ( Poly ` CC ) -> ( deg ` ( F oF + G ) ) e. NN0 ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( deg ` ( F oF + G ) ) e. NN0 ) | 
						
							| 7 | 6 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( deg ` ( F oF + G ) ) e. RR ) | 
						
							| 8 |  | dgrcl |  |-  ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) | 
						
							| 9 | 2 8 | eqeltrid |  |-  ( G e. ( Poly ` S ) -> N e. NN0 ) | 
						
							| 10 | 9 | 3ad2ant2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> N e. NN0 ) | 
						
							| 11 | 10 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> N e. RR ) | 
						
							| 12 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 13 | 1 12 | eqeltrid |  |-  ( F e. ( Poly ` S ) -> M e. NN0 ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> M e. NN0 ) | 
						
							| 15 | 14 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> M e. RR ) | 
						
							| 16 | 11 15 | ifcld |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> if ( M <_ N , N , M ) e. RR ) | 
						
							| 17 | 1 2 | dgradd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( deg ` ( F oF + G ) ) <_ if ( M <_ N , N , M ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( deg ` ( F oF + G ) ) <_ if ( M <_ N , N , M ) ) | 
						
							| 19 | 11 | leidd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> N <_ N ) | 
						
							| 20 |  | simp3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> M < N ) | 
						
							| 21 | 15 11 20 | ltled |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> M <_ N ) | 
						
							| 22 |  | breq1 |  |-  ( N = if ( M <_ N , N , M ) -> ( N <_ N <-> if ( M <_ N , N , M ) <_ N ) ) | 
						
							| 23 |  | breq1 |  |-  ( M = if ( M <_ N , N , M ) -> ( M <_ N <-> if ( M <_ N , N , M ) <_ N ) ) | 
						
							| 24 | 22 23 | ifboth |  |-  ( ( N <_ N /\ M <_ N ) -> if ( M <_ N , N , M ) <_ N ) | 
						
							| 25 | 19 21 24 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> if ( M <_ N , N , M ) <_ N ) | 
						
							| 26 | 7 16 11 18 25 | letrd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( deg ` ( F oF + G ) ) <_ N ) | 
						
							| 27 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 28 |  | eqid |  |-  ( coeff ` G ) = ( coeff ` G ) | 
						
							| 29 | 27 28 | coeadd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( coeff ` ( F oF + G ) ) = ( ( coeff ` F ) oF + ( coeff ` G ) ) ) | 
						
							| 30 | 29 | 3adant3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( coeff ` ( F oF + G ) ) = ( ( coeff ` F ) oF + ( coeff ` G ) ) ) | 
						
							| 31 | 30 | fveq1d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( coeff ` ( F oF + G ) ) ` N ) = ( ( ( coeff ` F ) oF + ( coeff ` G ) ) ` N ) ) | 
						
							| 32 | 27 | coef3 |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 33 | 32 | 3ad2ant1 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 34 | 33 | ffnd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( coeff ` F ) Fn NN0 ) | 
						
							| 35 | 28 | coef3 |  |-  ( G e. ( Poly ` S ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 36 | 35 | 3ad2ant2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 37 | 36 | ffnd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( coeff ` G ) Fn NN0 ) | 
						
							| 38 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 39 | 38 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> NN0 e. _V ) | 
						
							| 40 |  | inidm |  |-  ( NN0 i^i NN0 ) = NN0 | 
						
							| 41 | 15 11 | ltnled |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( M < N <-> -. N <_ M ) ) | 
						
							| 42 | 20 41 | mpbid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> -. N <_ M ) | 
						
							| 43 |  | simp1 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> F e. ( Poly ` S ) ) | 
						
							| 44 | 27 1 | dgrub |  |-  ( ( F e. ( Poly ` S ) /\ N e. NN0 /\ ( ( coeff ` F ) ` N ) =/= 0 ) -> N <_ M ) | 
						
							| 45 | 44 | 3expia |  |-  ( ( F e. ( Poly ` S ) /\ N e. NN0 ) -> ( ( ( coeff ` F ) ` N ) =/= 0 -> N <_ M ) ) | 
						
							| 46 | 43 10 45 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( ( coeff ` F ) ` N ) =/= 0 -> N <_ M ) ) | 
						
							| 47 | 46 | necon1bd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( -. N <_ M -> ( ( coeff ` F ) ` N ) = 0 ) ) | 
						
							| 48 | 42 47 | mpd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( coeff ` F ) ` N ) = 0 ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) /\ N e. NN0 ) -> ( ( coeff ` F ) ` N ) = 0 ) | 
						
							| 50 |  | eqidd |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) /\ N e. NN0 ) -> ( ( coeff ` G ) ` N ) = ( ( coeff ` G ) ` N ) ) | 
						
							| 51 | 34 37 39 39 40 49 50 | ofval |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) /\ N e. NN0 ) -> ( ( ( coeff ` F ) oF + ( coeff ` G ) ) ` N ) = ( 0 + ( ( coeff ` G ) ` N ) ) ) | 
						
							| 52 | 10 51 | mpdan |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( ( coeff ` F ) oF + ( coeff ` G ) ) ` N ) = ( 0 + ( ( coeff ` G ) ` N ) ) ) | 
						
							| 53 | 36 10 | ffvelcdmd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( coeff ` G ) ` N ) e. CC ) | 
						
							| 54 | 53 | addlidd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( 0 + ( ( coeff ` G ) ` N ) ) = ( ( coeff ` G ) ` N ) ) | 
						
							| 55 | 31 52 54 | 3eqtrd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( coeff ` ( F oF + G ) ) ` N ) = ( ( coeff ` G ) ` N ) ) | 
						
							| 56 |  | simp2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> G e. ( Poly ` S ) ) | 
						
							| 57 |  | 0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> 0 e. RR ) | 
						
							| 58 | 14 | nn0ge0d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> 0 <_ M ) | 
						
							| 59 | 57 15 11 58 20 | lelttrd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> 0 < N ) | 
						
							| 60 | 59 | gt0ne0d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> N =/= 0 ) | 
						
							| 61 | 2 28 | dgreq0 |  |-  ( G e. ( Poly ` S ) -> ( G = 0p <-> ( ( coeff ` G ) ` N ) = 0 ) ) | 
						
							| 62 |  | fveq2 |  |-  ( G = 0p -> ( deg ` G ) = ( deg ` 0p ) ) | 
						
							| 63 |  | dgr0 |  |-  ( deg ` 0p ) = 0 | 
						
							| 64 | 63 | eqcomi |  |-  0 = ( deg ` 0p ) | 
						
							| 65 | 62 2 64 | 3eqtr4g |  |-  ( G = 0p -> N = 0 ) | 
						
							| 66 | 61 65 | biimtrrdi |  |-  ( G e. ( Poly ` S ) -> ( ( ( coeff ` G ) ` N ) = 0 -> N = 0 ) ) | 
						
							| 67 | 66 | necon3d |  |-  ( G e. ( Poly ` S ) -> ( N =/= 0 -> ( ( coeff ` G ) ` N ) =/= 0 ) ) | 
						
							| 68 | 56 60 67 | sylc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( coeff ` G ) ` N ) =/= 0 ) | 
						
							| 69 | 55 68 | eqnetrd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( coeff ` ( F oF + G ) ) ` N ) =/= 0 ) | 
						
							| 70 |  | eqid |  |-  ( coeff ` ( F oF + G ) ) = ( coeff ` ( F oF + G ) ) | 
						
							| 71 |  | eqid |  |-  ( deg ` ( F oF + G ) ) = ( deg ` ( F oF + G ) ) | 
						
							| 72 | 70 71 | dgrub |  |-  ( ( ( F oF + G ) e. ( Poly ` CC ) /\ N e. NN0 /\ ( ( coeff ` ( F oF + G ) ) ` N ) =/= 0 ) -> N <_ ( deg ` ( F oF + G ) ) ) | 
						
							| 73 | 4 10 69 72 | syl3anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> N <_ ( deg ` ( F oF + G ) ) ) | 
						
							| 74 | 7 11 | letri3d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( ( deg ` ( F oF + G ) ) = N <-> ( ( deg ` ( F oF + G ) ) <_ N /\ N <_ ( deg ` ( F oF + G ) ) ) ) ) | 
						
							| 75 | 26 73 74 | mpbir2and |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ M < N ) -> ( deg ` ( F oF + G ) ) = N ) |