| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmon |
⊢ Mono |
| 1 |
|
vc |
⊢ 𝑐 |
| 2 |
|
ccat |
⊢ Cat |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑐 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
|
chom |
⊢ Hom |
| 8 |
4 7
|
cfv |
⊢ ( Hom ‘ 𝑐 ) |
| 9 |
|
vh |
⊢ ℎ |
| 10 |
|
vx |
⊢ 𝑥 |
| 11 |
6
|
cv |
⊢ 𝑏 |
| 12 |
|
vy |
⊢ 𝑦 |
| 13 |
|
vf |
⊢ 𝑓 |
| 14 |
10
|
cv |
⊢ 𝑥 |
| 15 |
9
|
cv |
⊢ ℎ |
| 16 |
12
|
cv |
⊢ 𝑦 |
| 17 |
14 16 15
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
| 18 |
|
vz |
⊢ 𝑧 |
| 19 |
|
vg |
⊢ 𝑔 |
| 20 |
18
|
cv |
⊢ 𝑧 |
| 21 |
20 14 15
|
co |
⊢ ( 𝑧 ℎ 𝑥 ) |
| 22 |
13
|
cv |
⊢ 𝑓 |
| 23 |
20 14
|
cop |
⊢ 〈 𝑧 , 𝑥 〉 |
| 24 |
|
cco |
⊢ comp |
| 25 |
4 24
|
cfv |
⊢ ( comp ‘ 𝑐 ) |
| 26 |
23 16 25
|
co |
⊢ ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) |
| 27 |
19
|
cv |
⊢ 𝑔 |
| 28 |
22 27 26
|
co |
⊢ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) |
| 29 |
19 21 28
|
cmpt |
⊢ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 30 |
29
|
ccnv |
⊢ ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 31 |
30
|
wfun |
⊢ Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 32 |
31 18 11
|
wral |
⊢ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 33 |
32 13 17
|
crab |
⊢ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } |
| 34 |
10 12 11 11 33
|
cmpo |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) |
| 35 |
9 8 34
|
csb |
⊢ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) |
| 36 |
6 5 35
|
csb |
⊢ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) |
| 37 |
1 2 36
|
cmpt |
⊢ ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) ) |
| 38 |
0 37
|
wceq |
⊢ Mono = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) ) |