| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmon |
|- Mono |
| 1 |
|
vc |
|- c |
| 2 |
|
ccat |
|- Cat |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- c |
| 5 |
4 3
|
cfv |
|- ( Base ` c ) |
| 6 |
|
vb |
|- b |
| 7 |
|
chom |
|- Hom |
| 8 |
4 7
|
cfv |
|- ( Hom ` c ) |
| 9 |
|
vh |
|- h |
| 10 |
|
vx |
|- x |
| 11 |
6
|
cv |
|- b |
| 12 |
|
vy |
|- y |
| 13 |
|
vf |
|- f |
| 14 |
10
|
cv |
|- x |
| 15 |
9
|
cv |
|- h |
| 16 |
12
|
cv |
|- y |
| 17 |
14 16 15
|
co |
|- ( x h y ) |
| 18 |
|
vz |
|- z |
| 19 |
|
vg |
|- g |
| 20 |
18
|
cv |
|- z |
| 21 |
20 14 15
|
co |
|- ( z h x ) |
| 22 |
13
|
cv |
|- f |
| 23 |
20 14
|
cop |
|- <. z , x >. |
| 24 |
|
cco |
|- comp |
| 25 |
4 24
|
cfv |
|- ( comp ` c ) |
| 26 |
23 16 25
|
co |
|- ( <. z , x >. ( comp ` c ) y ) |
| 27 |
19
|
cv |
|- g |
| 28 |
22 27 26
|
co |
|- ( f ( <. z , x >. ( comp ` c ) y ) g ) |
| 29 |
19 21 28
|
cmpt |
|- ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 30 |
29
|
ccnv |
|- `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 31 |
30
|
wfun |
|- Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 32 |
31 18 11
|
wral |
|- A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 33 |
32 13 17
|
crab |
|- { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } |
| 34 |
10 12 11 11 33
|
cmpo |
|- ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) |
| 35 |
9 8 34
|
csb |
|- [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) |
| 36 |
6 5 35
|
csb |
|- [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) |
| 37 |
1 2 36
|
cmpt |
|- ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) ) |
| 38 |
0 37
|
wceq |
|- Mono = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) ) |