Metamath Proof Explorer


Definition df-mpps

Description: Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mpps mPPSt = ( 𝑡 ∈ V ↦ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mPreSt ‘ 𝑡 ) ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑡 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpps mPPSt
1 vt 𝑡
2 cvv V
3 vd 𝑑
4 vh
5 va 𝑎
6 3 cv 𝑑
7 4 cv
8 5 cv 𝑎
9 6 7 8 cotp 𝑑 , , 𝑎
10 cmpst mPreSt
11 1 cv 𝑡
12 11 10 cfv ( mPreSt ‘ 𝑡 )
13 9 12 wcel 𝑑 , , 𝑎 ⟩ ∈ ( mPreSt ‘ 𝑡 )
14 cmcls mCls
15 11 14 cfv ( mCls ‘ 𝑡 )
16 6 7 15 co ( 𝑑 ( mCls ‘ 𝑡 ) )
17 8 16 wcel 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑡 ) )
18 13 17 wa ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mPreSt ‘ 𝑡 ) ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑡 ) ) )
19 18 3 4 5 coprab { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mPreSt ‘ 𝑡 ) ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑡 ) ) ) }
20 1 2 19 cmpt ( 𝑡 ∈ V ↦ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mPreSt ‘ 𝑡 ) ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑡 ) ) ) } )
21 0 20 wceq mPPSt = ( 𝑡 ∈ V ↦ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mPreSt ‘ 𝑡 ) ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑡 ) ) ) } )