Step |
Hyp |
Ref |
Expression |
0 |
|
cmpps |
|- mPPSt |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vd |
|- d |
4 |
|
vh |
|- h |
5 |
|
va |
|- a |
6 |
3
|
cv |
|- d |
7 |
4
|
cv |
|- h |
8 |
5
|
cv |
|- a |
9 |
6 7 8
|
cotp |
|- <. d , h , a >. |
10 |
|
cmpst |
|- mPreSt |
11 |
1
|
cv |
|- t |
12 |
11 10
|
cfv |
|- ( mPreSt ` t ) |
13 |
9 12
|
wcel |
|- <. d , h , a >. e. ( mPreSt ` t ) |
14 |
|
cmcls |
|- mCls |
15 |
11 14
|
cfv |
|- ( mCls ` t ) |
16 |
6 7 15
|
co |
|- ( d ( mCls ` t ) h ) |
17 |
8 16
|
wcel |
|- a e. ( d ( mCls ` t ) h ) |
18 |
13 17
|
wa |
|- ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) |
19 |
18 3 4 5
|
coprab |
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } |
20 |
1 2 19
|
cmpt |
|- ( t e. _V |-> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } ) |
21 |
0 20
|
wceq |
|- mPPSt = ( t e. _V |-> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } ) |