Metamath Proof Explorer


Definition df-mpps

Description: Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mpps
|- mPPSt = ( t e. _V |-> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpps
 |-  mPPSt
1 vt
 |-  t
2 cvv
 |-  _V
3 vd
 |-  d
4 vh
 |-  h
5 va
 |-  a
6 3 cv
 |-  d
7 4 cv
 |-  h
8 5 cv
 |-  a
9 6 7 8 cotp
 |-  <. d , h , a >.
10 cmpst
 |-  mPreSt
11 1 cv
 |-  t
12 11 10 cfv
 |-  ( mPreSt ` t )
13 9 12 wcel
 |-  <. d , h , a >. e. ( mPreSt ` t )
14 cmcls
 |-  mCls
15 11 14 cfv
 |-  ( mCls ` t )
16 6 7 15 co
 |-  ( d ( mCls ` t ) h )
17 8 16 wcel
 |-  a e. ( d ( mCls ` t ) h )
18 13 17 wa
 |-  ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) )
19 18 3 4 5 coprab
 |-  { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) }
20 1 2 19 cmpt
 |-  ( t e. _V |-> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } )
21 0 20 wceq
 |-  mPPSt = ( t e. _V |-> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } )