Metamath Proof Explorer


Definition df-mthm

Description: Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mthm
|- mThm = ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmthm
 |-  mThm
1 vt
 |-  t
2 cvv
 |-  _V
3 cmsr
 |-  mStRed
4 1 cv
 |-  t
5 4 3 cfv
 |-  ( mStRed ` t )
6 5 ccnv
 |-  `' ( mStRed ` t )
7 cmpps
 |-  mPPSt
8 4 7 cfv
 |-  ( mPPSt ` t )
9 5 8 cima
 |-  ( ( mStRed ` t ) " ( mPPSt ` t ) )
10 6 9 cima
 |-  ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) )
11 1 2 10 cmpt
 |-  ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) )
12 0 11 wceq
 |-  mThm = ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) )