Description: Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mthm | |- mThm = ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmthm | |- mThm |
|
1 | vt | |- t |
|
2 | cvv | |- _V |
|
3 | cmsr | |- mStRed |
|
4 | 1 | cv | |- t |
5 | 4 3 | cfv | |- ( mStRed ` t ) |
6 | 5 | ccnv | |- `' ( mStRed ` t ) |
7 | cmpps | |- mPPSt |
|
8 | 4 7 | cfv | |- ( mPPSt ` t ) |
9 | 5 8 | cima | |- ( ( mStRed ` t ) " ( mPPSt ` t ) ) |
10 | 6 9 | cima | |- ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) |
11 | 1 2 10 | cmpt | |- ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) ) |
12 | 0 11 | wceq | |- mThm = ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) ) |