Step |
Hyp |
Ref |
Expression |
1 |
|
mvtval.f |
|- V = ( mVT ` T ) |
2 |
|
mvtval.y |
|- Y = ( mType ` T ) |
3 |
|
fveq2 |
|- ( t = T -> ( mType ` t ) = ( mType ` T ) ) |
4 |
3
|
rneqd |
|- ( t = T -> ran ( mType ` t ) = ran ( mType ` T ) ) |
5 |
|
df-mvt |
|- mVT = ( t e. _V |-> ran ( mType ` t ) ) |
6 |
|
fvex |
|- ( mType ` T ) e. _V |
7 |
6
|
rnex |
|- ran ( mType ` T ) e. _V |
8 |
4 5 7
|
fvmpt |
|- ( T e. _V -> ( mVT ` T ) = ran ( mType ` T ) ) |
9 |
|
rn0 |
|- ran (/) = (/) |
10 |
9
|
eqcomi |
|- (/) = ran (/) |
11 |
|
fvprc |
|- ( -. T e. _V -> ( mVT ` T ) = (/) ) |
12 |
|
fvprc |
|- ( -. T e. _V -> ( mType ` T ) = (/) ) |
13 |
12
|
rneqd |
|- ( -. T e. _V -> ran ( mType ` T ) = ran (/) ) |
14 |
10 11 13
|
3eqtr4a |
|- ( -. T e. _V -> ( mVT ` T ) = ran ( mType ` T ) ) |
15 |
8 14
|
pm2.61i |
|- ( mVT ` T ) = ran ( mType ` T ) |
16 |
2
|
rneqi |
|- ran Y = ran ( mType ` T ) |
17 |
15 1 16
|
3eqtr4i |
|- V = ran Y |