| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvtval.f |  |-  V = ( mVT ` T ) | 
						
							| 2 |  | mvtval.y |  |-  Y = ( mType ` T ) | 
						
							| 3 |  | fveq2 |  |-  ( t = T -> ( mType ` t ) = ( mType ` T ) ) | 
						
							| 4 | 3 | rneqd |  |-  ( t = T -> ran ( mType ` t ) = ran ( mType ` T ) ) | 
						
							| 5 |  | df-mvt |  |-  mVT = ( t e. _V |-> ran ( mType ` t ) ) | 
						
							| 6 |  | fvex |  |-  ( mType ` T ) e. _V | 
						
							| 7 | 6 | rnex |  |-  ran ( mType ` T ) e. _V | 
						
							| 8 | 4 5 7 | fvmpt |  |-  ( T e. _V -> ( mVT ` T ) = ran ( mType ` T ) ) | 
						
							| 9 |  | rn0 |  |-  ran (/) = (/) | 
						
							| 10 | 9 | eqcomi |  |-  (/) = ran (/) | 
						
							| 11 |  | fvprc |  |-  ( -. T e. _V -> ( mVT ` T ) = (/) ) | 
						
							| 12 |  | fvprc |  |-  ( -. T e. _V -> ( mType ` T ) = (/) ) | 
						
							| 13 | 12 | rneqd |  |-  ( -. T e. _V -> ran ( mType ` T ) = ran (/) ) | 
						
							| 14 | 10 11 13 | 3eqtr4a |  |-  ( -. T e. _V -> ( mVT ` T ) = ran ( mType ` T ) ) | 
						
							| 15 | 8 14 | pm2.61i |  |-  ( mVT ` T ) = ran ( mType ` T ) | 
						
							| 16 | 2 | rneqi |  |-  ran Y = ran ( mType ` T ) | 
						
							| 17 | 15 1 16 | 3eqtr4i |  |-  V = ran Y |