Metamath Proof Explorer


Theorem mvtval

Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvtval.f 𝑉 = ( mVT ‘ 𝑇 )
mvtval.y 𝑌 = ( mType ‘ 𝑇 )
Assertion mvtval 𝑉 = ran 𝑌

Proof

Step Hyp Ref Expression
1 mvtval.f 𝑉 = ( mVT ‘ 𝑇 )
2 mvtval.y 𝑌 = ( mType ‘ 𝑇 )
3 fveq2 ( 𝑡 = 𝑇 → ( mType ‘ 𝑡 ) = ( mType ‘ 𝑇 ) )
4 3 rneqd ( 𝑡 = 𝑇 → ran ( mType ‘ 𝑡 ) = ran ( mType ‘ 𝑇 ) )
5 df-mvt mVT = ( 𝑡 ∈ V ↦ ran ( mType ‘ 𝑡 ) )
6 fvex ( mType ‘ 𝑇 ) ∈ V
7 6 rnex ran ( mType ‘ 𝑇 ) ∈ V
8 4 5 7 fvmpt ( 𝑇 ∈ V → ( mVT ‘ 𝑇 ) = ran ( mType ‘ 𝑇 ) )
9 rn0 ran ∅ = ∅
10 9 eqcomi ∅ = ran ∅
11 fvprc ( ¬ 𝑇 ∈ V → ( mVT ‘ 𝑇 ) = ∅ )
12 fvprc ( ¬ 𝑇 ∈ V → ( mType ‘ 𝑇 ) = ∅ )
13 12 rneqd ( ¬ 𝑇 ∈ V → ran ( mType ‘ 𝑇 ) = ran ∅ )
14 10 11 13 3eqtr4a ( ¬ 𝑇 ∈ V → ( mVT ‘ 𝑇 ) = ran ( mType ‘ 𝑇 ) )
15 8 14 pm2.61i ( mVT ‘ 𝑇 ) = ran ( mType ‘ 𝑇 )
16 2 rneqi ran 𝑌 = ran ( mType ‘ 𝑇 )
17 15 1 16 3eqtr4i 𝑉 = ran 𝑌