Step |
Hyp |
Ref |
Expression |
1 |
|
mvtval.f |
⊢ 𝑉 = ( mVT ‘ 𝑇 ) |
2 |
|
mvtval.y |
⊢ 𝑌 = ( mType ‘ 𝑇 ) |
3 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mType ‘ 𝑡 ) = ( mType ‘ 𝑇 ) ) |
4 |
3
|
rneqd |
⊢ ( 𝑡 = 𝑇 → ran ( mType ‘ 𝑡 ) = ran ( mType ‘ 𝑇 ) ) |
5 |
|
df-mvt |
⊢ mVT = ( 𝑡 ∈ V ↦ ran ( mType ‘ 𝑡 ) ) |
6 |
|
fvex |
⊢ ( mType ‘ 𝑇 ) ∈ V |
7 |
6
|
rnex |
⊢ ran ( mType ‘ 𝑇 ) ∈ V |
8 |
4 5 7
|
fvmpt |
⊢ ( 𝑇 ∈ V → ( mVT ‘ 𝑇 ) = ran ( mType ‘ 𝑇 ) ) |
9 |
|
rn0 |
⊢ ran ∅ = ∅ |
10 |
9
|
eqcomi |
⊢ ∅ = ran ∅ |
11 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mVT ‘ 𝑇 ) = ∅ ) |
12 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mType ‘ 𝑇 ) = ∅ ) |
13 |
12
|
rneqd |
⊢ ( ¬ 𝑇 ∈ V → ran ( mType ‘ 𝑇 ) = ran ∅ ) |
14 |
10 11 13
|
3eqtr4a |
⊢ ( ¬ 𝑇 ∈ V → ( mVT ‘ 𝑇 ) = ran ( mType ‘ 𝑇 ) ) |
15 |
8 14
|
pm2.61i |
⊢ ( mVT ‘ 𝑇 ) = ran ( mType ‘ 𝑇 ) |
16 |
2
|
rneqi |
⊢ ran 𝑌 = ran ( mType ‘ 𝑇 ) |
17 |
15 1 16
|
3eqtr4i |
⊢ 𝑉 = ran 𝑌 |