Metamath Proof Explorer


Theorem mvtval

Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvtval.f V=mVTT
mvtval.y Y=mTypeT
Assertion mvtval V=ranY

Proof

Step Hyp Ref Expression
1 mvtval.f V=mVTT
2 mvtval.y Y=mTypeT
3 fveq2 t=TmTypet=mTypeT
4 3 rneqd t=TranmTypet=ranmTypeT
5 df-mvt mVT=tVranmTypet
6 fvex mTypeTV
7 6 rnex ranmTypeTV
8 4 5 7 fvmpt TVmVTT=ranmTypeT
9 rn0 ran=
10 9 eqcomi =ran
11 fvprc ¬TVmVTT=
12 fvprc ¬TVmTypeT=
13 12 rneqd ¬TVranmTypeT=ran
14 10 11 13 3eqtr4a ¬TVmVTT=ranmTypeT
15 8 14 pm2.61i mVTT=ranmTypeT
16 2 rneqi ranY=ranmTypeT
17 15 1 16 3eqtr4i V=ranY