| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrexval.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
| 2 |
|
mrexval.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 3 |
|
mrexval.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
| 4 |
|
elex |
⊢ ( 𝑇 ∈ 𝑊 → 𝑇 ∈ V ) |
| 5 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mCN ‘ 𝑡 ) = ( mCN ‘ 𝑇 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mCN ‘ 𝑡 ) = 𝐶 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = ( mVR ‘ 𝑇 ) ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = 𝑉 ) |
| 9 |
6 8
|
uneq12d |
⊢ ( 𝑡 = 𝑇 → ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) = ( 𝐶 ∪ 𝑉 ) ) |
| 10 |
|
wrdeq |
⊢ ( ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) = ( 𝐶 ∪ 𝑉 ) → Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) = Word ( 𝐶 ∪ 𝑉 ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑡 = 𝑇 → Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) = Word ( 𝐶 ∪ 𝑉 ) ) |
| 12 |
|
df-mrex |
⊢ mREx = ( 𝑡 ∈ V ↦ Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) |
| 13 |
|
fvex |
⊢ ( mCN ‘ 𝑡 ) ∈ V |
| 14 |
|
fvex |
⊢ ( mVR ‘ 𝑡 ) ∈ V |
| 15 |
13 14
|
unex |
⊢ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ∈ V |
| 16 |
15
|
wrdexi |
⊢ Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ∈ V |
| 17 |
11 12 16
|
fvmpt3i |
⊢ ( 𝑇 ∈ V → ( mREx ‘ 𝑇 ) = Word ( 𝐶 ∪ 𝑉 ) ) |
| 18 |
4 17
|
syl |
⊢ ( 𝑇 ∈ 𝑊 → ( mREx ‘ 𝑇 ) = Word ( 𝐶 ∪ 𝑉 ) ) |
| 19 |
3 18
|
eqtrid |
⊢ ( 𝑇 ∈ 𝑊 → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |