Step |
Hyp |
Ref |
Expression |
1 |
|
mrexval.c |
|- C = ( mCN ` T ) |
2 |
|
mrexval.v |
|- V = ( mVR ` T ) |
3 |
|
mrexval.r |
|- R = ( mREx ` T ) |
4 |
|
elex |
|- ( T e. W -> T e. _V ) |
5 |
|
fveq2 |
|- ( t = T -> ( mCN ` t ) = ( mCN ` T ) ) |
6 |
5 1
|
eqtr4di |
|- ( t = T -> ( mCN ` t ) = C ) |
7 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
8 |
7 2
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
9 |
6 8
|
uneq12d |
|- ( t = T -> ( ( mCN ` t ) u. ( mVR ` t ) ) = ( C u. V ) ) |
10 |
|
wrdeq |
|- ( ( ( mCN ` t ) u. ( mVR ` t ) ) = ( C u. V ) -> Word ( ( mCN ` t ) u. ( mVR ` t ) ) = Word ( C u. V ) ) |
11 |
9 10
|
syl |
|- ( t = T -> Word ( ( mCN ` t ) u. ( mVR ` t ) ) = Word ( C u. V ) ) |
12 |
|
df-mrex |
|- mREx = ( t e. _V |-> Word ( ( mCN ` t ) u. ( mVR ` t ) ) ) |
13 |
|
fvex |
|- ( mCN ` t ) e. _V |
14 |
|
fvex |
|- ( mVR ` t ) e. _V |
15 |
13 14
|
unex |
|- ( ( mCN ` t ) u. ( mVR ` t ) ) e. _V |
16 |
15
|
wrdexi |
|- Word ( ( mCN ` t ) u. ( mVR ` t ) ) e. _V |
17 |
11 12 16
|
fvmpt3i |
|- ( T e. _V -> ( mREx ` T ) = Word ( C u. V ) ) |
18 |
4 17
|
syl |
|- ( T e. W -> ( mREx ` T ) = Word ( C u. V ) ) |
19 |
3 18
|
syl5eq |
|- ( T e. W -> R = Word ( C u. V ) ) |