Metamath Proof Explorer


Theorem mrexval

Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrexval.c
|- C = ( mCN ` T )
mrexval.v
|- V = ( mVR ` T )
mrexval.r
|- R = ( mREx ` T )
Assertion mrexval
|- ( T e. W -> R = Word ( C u. V ) )

Proof

Step Hyp Ref Expression
1 mrexval.c
 |-  C = ( mCN ` T )
2 mrexval.v
 |-  V = ( mVR ` T )
3 mrexval.r
 |-  R = ( mREx ` T )
4 elex
 |-  ( T e. W -> T e. _V )
5 fveq2
 |-  ( t = T -> ( mCN ` t ) = ( mCN ` T ) )
6 5 1 eqtr4di
 |-  ( t = T -> ( mCN ` t ) = C )
7 fveq2
 |-  ( t = T -> ( mVR ` t ) = ( mVR ` T ) )
8 7 2 eqtr4di
 |-  ( t = T -> ( mVR ` t ) = V )
9 6 8 uneq12d
 |-  ( t = T -> ( ( mCN ` t ) u. ( mVR ` t ) ) = ( C u. V ) )
10 wrdeq
 |-  ( ( ( mCN ` t ) u. ( mVR ` t ) ) = ( C u. V ) -> Word ( ( mCN ` t ) u. ( mVR ` t ) ) = Word ( C u. V ) )
11 9 10 syl
 |-  ( t = T -> Word ( ( mCN ` t ) u. ( mVR ` t ) ) = Word ( C u. V ) )
12 df-mrex
 |-  mREx = ( t e. _V |-> Word ( ( mCN ` t ) u. ( mVR ` t ) ) )
13 fvex
 |-  ( mCN ` t ) e. _V
14 fvex
 |-  ( mVR ` t ) e. _V
15 13 14 unex
 |-  ( ( mCN ` t ) u. ( mVR ` t ) ) e. _V
16 15 wrdexi
 |-  Word ( ( mCN ` t ) u. ( mVR ` t ) ) e. _V
17 11 12 16 fvmpt3i
 |-  ( T e. _V -> ( mREx ` T ) = Word ( C u. V ) )
18 4 17 syl
 |-  ( T e. W -> ( mREx ` T ) = Word ( C u. V ) )
19 3 18 syl5eq
 |-  ( T e. W -> R = Word ( C u. V ) )