| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrexval.c |
|- C = ( mCN ` T ) |
| 2 |
|
mrexval.v |
|- V = ( mVR ` T ) |
| 3 |
|
mrexval.r |
|- R = ( mREx ` T ) |
| 4 |
|
elex |
|- ( T e. W -> T e. _V ) |
| 5 |
|
fveq2 |
|- ( t = T -> ( mCN ` t ) = ( mCN ` T ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( t = T -> ( mCN ` t ) = C ) |
| 7 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
| 9 |
6 8
|
uneq12d |
|- ( t = T -> ( ( mCN ` t ) u. ( mVR ` t ) ) = ( C u. V ) ) |
| 10 |
|
wrdeq |
|- ( ( ( mCN ` t ) u. ( mVR ` t ) ) = ( C u. V ) -> Word ( ( mCN ` t ) u. ( mVR ` t ) ) = Word ( C u. V ) ) |
| 11 |
9 10
|
syl |
|- ( t = T -> Word ( ( mCN ` t ) u. ( mVR ` t ) ) = Word ( C u. V ) ) |
| 12 |
|
df-mrex |
|- mREx = ( t e. _V |-> Word ( ( mCN ` t ) u. ( mVR ` t ) ) ) |
| 13 |
|
fvex |
|- ( mCN ` t ) e. _V |
| 14 |
|
fvex |
|- ( mVR ` t ) e. _V |
| 15 |
13 14
|
unex |
|- ( ( mCN ` t ) u. ( mVR ` t ) ) e. _V |
| 16 |
15
|
wrdexi |
|- Word ( ( mCN ` t ) u. ( mVR ` t ) ) e. _V |
| 17 |
11 12 16
|
fvmpt3i |
|- ( T e. _V -> ( mREx ` T ) = Word ( C u. V ) ) |
| 18 |
4 17
|
syl |
|- ( T e. W -> ( mREx ` T ) = Word ( C u. V ) ) |
| 19 |
3 18
|
eqtrid |
|- ( T e. W -> R = Word ( C u. V ) ) |