Step |
Hyp |
Ref |
Expression |
1 |
|
mexval.k |
|- K = ( mTC ` T ) |
2 |
|
mexval.e |
|- E = ( mEx ` T ) |
3 |
|
mexval.r |
|- R = ( mREx ` T ) |
4 |
|
fveq2 |
|- ( t = T -> ( mTC ` t ) = ( mTC ` T ) ) |
5 |
4 1
|
eqtr4di |
|- ( t = T -> ( mTC ` t ) = K ) |
6 |
|
fveq2 |
|- ( t = T -> ( mREx ` t ) = ( mREx ` T ) ) |
7 |
6 3
|
eqtr4di |
|- ( t = T -> ( mREx ` t ) = R ) |
8 |
5 7
|
xpeq12d |
|- ( t = T -> ( ( mTC ` t ) X. ( mREx ` t ) ) = ( K X. R ) ) |
9 |
|
df-mex |
|- mEx = ( t e. _V |-> ( ( mTC ` t ) X. ( mREx ` t ) ) ) |
10 |
|
fvex |
|- ( mTC ` t ) e. _V |
11 |
|
fvex |
|- ( mREx ` t ) e. _V |
12 |
10 11
|
xpex |
|- ( ( mTC ` t ) X. ( mREx ` t ) ) e. _V |
13 |
8 9 12
|
fvmpt3i |
|- ( T e. _V -> ( mEx ` T ) = ( K X. R ) ) |
14 |
|
xp0 |
|- ( K X. (/) ) = (/) |
15 |
14
|
eqcomi |
|- (/) = ( K X. (/) ) |
16 |
|
fvprc |
|- ( -. T e. _V -> ( mEx ` T ) = (/) ) |
17 |
|
fvprc |
|- ( -. T e. _V -> ( mREx ` T ) = (/) ) |
18 |
3 17
|
syl5eq |
|- ( -. T e. _V -> R = (/) ) |
19 |
18
|
xpeq2d |
|- ( -. T e. _V -> ( K X. R ) = ( K X. (/) ) ) |
20 |
15 16 19
|
3eqtr4a |
|- ( -. T e. _V -> ( mEx ` T ) = ( K X. R ) ) |
21 |
13 20
|
pm2.61i |
|- ( mEx ` T ) = ( K X. R ) |
22 |
2 21
|
eqtri |
|- E = ( K X. R ) |