Metamath Proof Explorer


Theorem mexval

Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mexval.k K = mTC T
mexval.e E = mEx T
mexval.r R = mREx T
Assertion mexval E = K × R

Proof

Step Hyp Ref Expression
1 mexval.k K = mTC T
2 mexval.e E = mEx T
3 mexval.r R = mREx T
4 fveq2 t = T mTC t = mTC T
5 4 1 eqtr4di t = T mTC t = K
6 fveq2 t = T mREx t = mREx T
7 6 3 eqtr4di t = T mREx t = R
8 5 7 xpeq12d t = T mTC t × mREx t = K × R
9 df-mex mEx = t V mTC t × mREx t
10 fvex mTC t V
11 fvex mREx t V
12 10 11 xpex mTC t × mREx t V
13 8 9 12 fvmpt3i T V mEx T = K × R
14 xp0 K × =
15 14 eqcomi = K ×
16 fvprc ¬ T V mEx T =
17 fvprc ¬ T V mREx T =
18 3 17 syl5eq ¬ T V R =
19 18 xpeq2d ¬ T V K × R = K ×
20 15 16 19 3eqtr4a ¬ T V mEx T = K × R
21 13 20 pm2.61i mEx T = K × R
22 2 21 eqtri E = K × R