Metamath Proof Explorer


Theorem mexval2

Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mexval.k
|- K = ( mTC ` T )
mexval.e
|- E = ( mEx ` T )
mexval2.c
|- C = ( mCN ` T )
mexval2.v
|- V = ( mVR ` T )
Assertion mexval2
|- E = ( K X. Word ( C u. V ) )

Proof

Step Hyp Ref Expression
1 mexval.k
 |-  K = ( mTC ` T )
2 mexval.e
 |-  E = ( mEx ` T )
3 mexval2.c
 |-  C = ( mCN ` T )
4 mexval2.v
 |-  V = ( mVR ` T )
5 eqid
 |-  ( mREx ` T ) = ( mREx ` T )
6 1 2 5 mexval
 |-  E = ( K X. ( mREx ` T ) )
7 3 4 5 mrexval
 |-  ( T e. _V -> ( mREx ` T ) = Word ( C u. V ) )
8 7 xpeq2d
 |-  ( T e. _V -> ( K X. ( mREx ` T ) ) = ( K X. Word ( C u. V ) ) )
9 6 8 syl5eq
 |-  ( T e. _V -> E = ( K X. Word ( C u. V ) ) )
10 0xp
 |-  ( (/) X. Word ( C u. V ) ) = (/)
11 10 eqcomi
 |-  (/) = ( (/) X. Word ( C u. V ) )
12 fvprc
 |-  ( -. T e. _V -> ( mEx ` T ) = (/) )
13 2 12 syl5eq
 |-  ( -. T e. _V -> E = (/) )
14 fvprc
 |-  ( -. T e. _V -> ( mTC ` T ) = (/) )
15 1 14 syl5eq
 |-  ( -. T e. _V -> K = (/) )
16 15 xpeq1d
 |-  ( -. T e. _V -> ( K X. Word ( C u. V ) ) = ( (/) X. Word ( C u. V ) ) )
17 11 13 16 3eqtr4a
 |-  ( -. T e. _V -> E = ( K X. Word ( C u. V ) ) )
18 9 17 pm2.61i
 |-  E = ( K X. Word ( C u. V ) )