Step |
Hyp |
Ref |
Expression |
1 |
|
mexval.k |
|- K = ( mTC ` T ) |
2 |
|
mexval.e |
|- E = ( mEx ` T ) |
3 |
|
mexval2.c |
|- C = ( mCN ` T ) |
4 |
|
mexval2.v |
|- V = ( mVR ` T ) |
5 |
|
eqid |
|- ( mREx ` T ) = ( mREx ` T ) |
6 |
1 2 5
|
mexval |
|- E = ( K X. ( mREx ` T ) ) |
7 |
3 4 5
|
mrexval |
|- ( T e. _V -> ( mREx ` T ) = Word ( C u. V ) ) |
8 |
7
|
xpeq2d |
|- ( T e. _V -> ( K X. ( mREx ` T ) ) = ( K X. Word ( C u. V ) ) ) |
9 |
6 8
|
syl5eq |
|- ( T e. _V -> E = ( K X. Word ( C u. V ) ) ) |
10 |
|
0xp |
|- ( (/) X. Word ( C u. V ) ) = (/) |
11 |
10
|
eqcomi |
|- (/) = ( (/) X. Word ( C u. V ) ) |
12 |
|
fvprc |
|- ( -. T e. _V -> ( mEx ` T ) = (/) ) |
13 |
2 12
|
syl5eq |
|- ( -. T e. _V -> E = (/) ) |
14 |
|
fvprc |
|- ( -. T e. _V -> ( mTC ` T ) = (/) ) |
15 |
1 14
|
syl5eq |
|- ( -. T e. _V -> K = (/) ) |
16 |
15
|
xpeq1d |
|- ( -. T e. _V -> ( K X. Word ( C u. V ) ) = ( (/) X. Word ( C u. V ) ) ) |
17 |
11 13 16
|
3eqtr4a |
|- ( -. T e. _V -> E = ( K X. Word ( C u. V ) ) ) |
18 |
9 17
|
pm2.61i |
|- E = ( K X. Word ( C u. V ) ) |