Step |
Hyp |
Ref |
Expression |
1 |
|
mdvval.v |
|- V = ( mVR ` T ) |
2 |
|
mdvval.d |
|- D = ( mDV ` T ) |
3 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
4 |
3 1
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
5 |
4
|
sqxpeqd |
|- ( t = T -> ( ( mVR ` t ) X. ( mVR ` t ) ) = ( V X. V ) ) |
6 |
5
|
difeq1d |
|- ( t = T -> ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) = ( ( V X. V ) \ _I ) ) |
7 |
|
df-mdv |
|- mDV = ( t e. _V |-> ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) ) |
8 |
|
fvex |
|- ( mVR ` t ) e. _V |
9 |
8 8
|
xpex |
|- ( ( mVR ` t ) X. ( mVR ` t ) ) e. _V |
10 |
|
difexg |
|- ( ( ( mVR ` t ) X. ( mVR ` t ) ) e. _V -> ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) e. _V ) |
11 |
9 10
|
ax-mp |
|- ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) e. _V |
12 |
6 7 11
|
fvmpt3i |
|- ( T e. _V -> ( mDV ` T ) = ( ( V X. V ) \ _I ) ) |
13 |
|
0dif |
|- ( (/) \ _I ) = (/) |
14 |
13
|
eqcomi |
|- (/) = ( (/) \ _I ) |
15 |
|
fvprc |
|- ( -. T e. _V -> ( mDV ` T ) = (/) ) |
16 |
|
fvprc |
|- ( -. T e. _V -> ( mVR ` T ) = (/) ) |
17 |
1 16
|
syl5eq |
|- ( -. T e. _V -> V = (/) ) |
18 |
17
|
xpeq2d |
|- ( -. T e. _V -> ( V X. V ) = ( V X. (/) ) ) |
19 |
|
xp0 |
|- ( V X. (/) ) = (/) |
20 |
18 19
|
eqtrdi |
|- ( -. T e. _V -> ( V X. V ) = (/) ) |
21 |
20
|
difeq1d |
|- ( -. T e. _V -> ( ( V X. V ) \ _I ) = ( (/) \ _I ) ) |
22 |
14 15 21
|
3eqtr4a |
|- ( -. T e. _V -> ( mDV ` T ) = ( ( V X. V ) \ _I ) ) |
23 |
12 22
|
pm2.61i |
|- ( mDV ` T ) = ( ( V X. V ) \ _I ) |
24 |
2 23
|
eqtri |
|- D = ( ( V X. V ) \ _I ) |