Step |
Hyp |
Ref |
Expression |
1 |
|
mdvval.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
mdvval.d |
⊢ 𝐷 = ( mDV ‘ 𝑇 ) |
3 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = ( mVR ‘ 𝑇 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = 𝑉 ) |
5 |
4
|
sqxpeqd |
⊢ ( 𝑡 = 𝑇 → ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) = ( 𝑉 × 𝑉 ) ) |
6 |
5
|
difeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) = ( ( 𝑉 × 𝑉 ) ∖ I ) ) |
7 |
|
df-mdv |
⊢ mDV = ( 𝑡 ∈ V ↦ ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) ) |
8 |
|
fvex |
⊢ ( mVR ‘ 𝑡 ) ∈ V |
9 |
8 8
|
xpex |
⊢ ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∈ V |
10 |
|
difexg |
⊢ ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∈ V → ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) ∈ V ) |
11 |
9 10
|
ax-mp |
⊢ ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) ∈ V |
12 |
6 7 11
|
fvmpt3i |
⊢ ( 𝑇 ∈ V → ( mDV ‘ 𝑇 ) = ( ( 𝑉 × 𝑉 ) ∖ I ) ) |
13 |
|
0dif |
⊢ ( ∅ ∖ I ) = ∅ |
14 |
13
|
eqcomi |
⊢ ∅ = ( ∅ ∖ I ) |
15 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mDV ‘ 𝑇 ) = ∅ ) |
16 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mVR ‘ 𝑇 ) = ∅ ) |
17 |
1 16
|
syl5eq |
⊢ ( ¬ 𝑇 ∈ V → 𝑉 = ∅ ) |
18 |
17
|
xpeq2d |
⊢ ( ¬ 𝑇 ∈ V → ( 𝑉 × 𝑉 ) = ( 𝑉 × ∅ ) ) |
19 |
|
xp0 |
⊢ ( 𝑉 × ∅ ) = ∅ |
20 |
18 19
|
eqtrdi |
⊢ ( ¬ 𝑇 ∈ V → ( 𝑉 × 𝑉 ) = ∅ ) |
21 |
20
|
difeq1d |
⊢ ( ¬ 𝑇 ∈ V → ( ( 𝑉 × 𝑉 ) ∖ I ) = ( ∅ ∖ I ) ) |
22 |
14 15 21
|
3eqtr4a |
⊢ ( ¬ 𝑇 ∈ V → ( mDV ‘ 𝑇 ) = ( ( 𝑉 × 𝑉 ) ∖ I ) ) |
23 |
12 22
|
pm2.61i |
⊢ ( mDV ‘ 𝑇 ) = ( ( 𝑉 × 𝑉 ) ∖ I ) |
24 |
2 23
|
eqtri |
⊢ 𝐷 = ( ( 𝑉 × 𝑉 ) ∖ I ) |