Step |
Hyp |
Ref |
Expression |
1 |
|
mvrsval.v |
|- V = ( mVR ` T ) |
2 |
|
mvrsval.e |
|- E = ( mEx ` T ) |
3 |
|
mvrsval.w |
|- W = ( mVars ` T ) |
4 |
|
elfvex |
|- ( X e. ( mEx ` T ) -> T e. _V ) |
5 |
4 2
|
eleq2s |
|- ( X e. E -> T e. _V ) |
6 |
|
fveq2 |
|- ( t = T -> ( mEx ` t ) = ( mEx ` T ) ) |
7 |
6 2
|
eqtr4di |
|- ( t = T -> ( mEx ` t ) = E ) |
8 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
9 |
8 1
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
10 |
9
|
ineq2d |
|- ( t = T -> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) = ( ran ( 2nd ` e ) i^i V ) ) |
11 |
7 10
|
mpteq12dv |
|- ( t = T -> ( e e. ( mEx ` t ) |-> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) ) = ( e e. E |-> ( ran ( 2nd ` e ) i^i V ) ) ) |
12 |
|
df-mvrs |
|- mVars = ( t e. _V |-> ( e e. ( mEx ` t ) |-> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) ) ) |
13 |
11 12 2
|
mptfvmpt |
|- ( T e. _V -> ( mVars ` T ) = ( e e. E |-> ( ran ( 2nd ` e ) i^i V ) ) ) |
14 |
5 13
|
syl |
|- ( X e. E -> ( mVars ` T ) = ( e e. E |-> ( ran ( 2nd ` e ) i^i V ) ) ) |
15 |
3 14
|
syl5eq |
|- ( X e. E -> W = ( e e. E |-> ( ran ( 2nd ` e ) i^i V ) ) ) |
16 |
|
fveq2 |
|- ( e = X -> ( 2nd ` e ) = ( 2nd ` X ) ) |
17 |
16
|
rneqd |
|- ( e = X -> ran ( 2nd ` e ) = ran ( 2nd ` X ) ) |
18 |
17
|
ineq1d |
|- ( e = X -> ( ran ( 2nd ` e ) i^i V ) = ( ran ( 2nd ` X ) i^i V ) ) |
19 |
18
|
adantl |
|- ( ( X e. E /\ e = X ) -> ( ran ( 2nd ` e ) i^i V ) = ( ran ( 2nd ` X ) i^i V ) ) |
20 |
|
id |
|- ( X e. E -> X e. E ) |
21 |
|
fvex |
|- ( 2nd ` X ) e. _V |
22 |
21
|
rnex |
|- ran ( 2nd ` X ) e. _V |
23 |
22
|
inex1 |
|- ( ran ( 2nd ` X ) i^i V ) e. _V |
24 |
23
|
a1i |
|- ( X e. E -> ( ran ( 2nd ` X ) i^i V ) e. _V ) |
25 |
15 19 20 24
|
fvmptd |
|- ( X e. E -> ( W ` X ) = ( ran ( 2nd ` X ) i^i V ) ) |