Metamath Proof Explorer


Definition df-msta

Description: Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msta mStat = ( 𝑡 ∈ V ↦ ran ( mStRed ‘ 𝑡 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsta mStat
1 vt 𝑡
2 cvv V
3 cmsr mStRed
4 1 cv 𝑡
5 4 3 cfv ( mStRed ‘ 𝑡 )
6 5 crn ran ( mStRed ‘ 𝑡 )
7 1 2 6 cmpt ( 𝑡 ∈ V ↦ ran ( mStRed ‘ 𝑡 ) )
8 0 7 wceq mStat = ( 𝑡 ∈ V ↦ ran ( mStRed ‘ 𝑡 ) )