Metamath Proof Explorer


Definition df-mfs

Description: Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mfs mFS = { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmfs mFS
1 vt 𝑡
2 cmcn mCN
3 1 cv 𝑡
4 3 2 cfv ( mCN ‘ 𝑡 )
5 cmvar mVR
6 3 5 cfv ( mVR ‘ 𝑡 )
7 4 6 cin ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) )
8 c0
9 7 8 wceq ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅
10 cmty mType
11 3 10 cfv ( mType ‘ 𝑡 )
12 cmtc mTC
13 3 12 cfv ( mTC ‘ 𝑡 )
14 6 13 11 wf ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 )
15 9 14 wa ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) )
16 cmax mAx
17 3 16 cfv ( mAx ‘ 𝑡 )
18 cmsta mStat
19 3 18 cfv ( mStat ‘ 𝑡 )
20 17 19 wss ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 )
21 vv 𝑣
22 cmvt mVT
23 3 22 cfv ( mVT ‘ 𝑡 )
24 11 ccnv ( mType ‘ 𝑡 )
25 21 cv 𝑣
26 25 csn { 𝑣 }
27 24 26 cima ( ( mType ‘ 𝑡 ) “ { 𝑣 } )
28 cfn Fin
29 27 28 wcel ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin
30 29 wn ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin
31 30 21 23 wral 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin
32 20 31 wa ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin )
33 15 32 wa ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) )
34 33 1 cab { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) }
35 0 34 wceq mFS = { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) }