Step |
Hyp |
Ref |
Expression |
0 |
|
cmfs |
⊢ mFS |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cmcn |
⊢ mCN |
3 |
1
|
cv |
⊢ 𝑡 |
4 |
3 2
|
cfv |
⊢ ( mCN ‘ 𝑡 ) |
5 |
|
cmvar |
⊢ mVR |
6 |
3 5
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
7 |
4 6
|
cin |
⊢ ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) |
8 |
|
c0 |
⊢ ∅ |
9 |
7 8
|
wceq |
⊢ ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ |
10 |
|
cmty |
⊢ mType |
11 |
3 10
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
12 |
|
cmtc |
⊢ mTC |
13 |
3 12
|
cfv |
⊢ ( mTC ‘ 𝑡 ) |
14 |
6 13 11
|
wf |
⊢ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) |
15 |
9 14
|
wa |
⊢ ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) |
16 |
|
cmax |
⊢ mAx |
17 |
3 16
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
18 |
|
cmsta |
⊢ mStat |
19 |
3 18
|
cfv |
⊢ ( mStat ‘ 𝑡 ) |
20 |
17 19
|
wss |
⊢ ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) |
21 |
|
vv |
⊢ 𝑣 |
22 |
|
cmvt |
⊢ mVT |
23 |
3 22
|
cfv |
⊢ ( mVT ‘ 𝑡 ) |
24 |
11
|
ccnv |
⊢ ◡ ( mType ‘ 𝑡 ) |
25 |
21
|
cv |
⊢ 𝑣 |
26 |
25
|
csn |
⊢ { 𝑣 } |
27 |
24 26
|
cima |
⊢ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) |
28 |
|
cfn |
⊢ Fin |
29 |
27 28
|
wcel |
⊢ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin |
30 |
29
|
wn |
⊢ ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin |
31 |
30 21 23
|
wral |
⊢ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin |
32 |
20 31
|
wa |
⊢ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) |
33 |
15 32
|
wa |
⊢ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) |
34 |
33 1
|
cab |
⊢ { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) } |
35 |
0 34
|
wceq |
⊢ mFS = { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) } |