| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmfs |
⊢ mFS |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cmcn |
⊢ mCN |
| 3 |
1
|
cv |
⊢ 𝑡 |
| 4 |
3 2
|
cfv |
⊢ ( mCN ‘ 𝑡 ) |
| 5 |
|
cmvar |
⊢ mVR |
| 6 |
3 5
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
| 7 |
4 6
|
cin |
⊢ ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) |
| 8 |
|
c0 |
⊢ ∅ |
| 9 |
7 8
|
wceq |
⊢ ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ |
| 10 |
|
cmty |
⊢ mType |
| 11 |
3 10
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
| 12 |
|
cmtc |
⊢ mTC |
| 13 |
3 12
|
cfv |
⊢ ( mTC ‘ 𝑡 ) |
| 14 |
6 13 11
|
wf |
⊢ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) |
| 15 |
9 14
|
wa |
⊢ ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) |
| 16 |
|
cmax |
⊢ mAx |
| 17 |
3 16
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
| 18 |
|
cmsta |
⊢ mStat |
| 19 |
3 18
|
cfv |
⊢ ( mStat ‘ 𝑡 ) |
| 20 |
17 19
|
wss |
⊢ ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) |
| 21 |
|
vv |
⊢ 𝑣 |
| 22 |
|
cmvt |
⊢ mVT |
| 23 |
3 22
|
cfv |
⊢ ( mVT ‘ 𝑡 ) |
| 24 |
11
|
ccnv |
⊢ ◡ ( mType ‘ 𝑡 ) |
| 25 |
21
|
cv |
⊢ 𝑣 |
| 26 |
25
|
csn |
⊢ { 𝑣 } |
| 27 |
24 26
|
cima |
⊢ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) |
| 28 |
|
cfn |
⊢ Fin |
| 29 |
27 28
|
wcel |
⊢ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin |
| 30 |
29
|
wn |
⊢ ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin |
| 31 |
30 21 23
|
wral |
⊢ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin |
| 32 |
20 31
|
wa |
⊢ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) |
| 33 |
15 32
|
wa |
⊢ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) |
| 34 |
33 1
|
cab |
⊢ { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) } |
| 35 |
0 34
|
wceq |
⊢ mFS = { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) } |